

Elsevier in the Classroom

Workbook for Pathway Studio®

Biological molecular pathway modeling & experimental data annotation reference tool

Elsevier in the classroom workbook

This workbook contains a series of Pathway Studio teaching modules designed to provide comprehensive training in the full use of the Pathway Studio software, set within a Systems Biology context.

Additional instructional assistance is available in the form of prerecorded webinars which can be accessed through the Pathway Studio website at <u>www.pathwaystudio.com</u>

Please be advised that the exact numbers of entities and relations as cited in the various modules in this workbook may differ slightly from the user's experience. The reason for this stems from the frequent and ongoing updating of the underlying Pathway Studio Knowledge base. This updating provides the user a timely review of the most relevant life science literature.

Chris Cheadle, Ph.D. Director of Genomics Research R&D Solutions c.cheadle@elsevier.com

ELSEVIER www.pathwaystudio.com

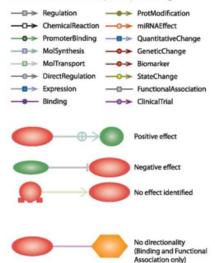
Elsevier Inc. www.elsevier.com/rd-solutions

Acknowledgements

To Brad Fenwick, senior vice president, Global Strategic Alliance, Elsevier Inc., for his generous financial grants and moral support, without which this project could not have been done.

To Jaqui Hodgkinson, vice president, Product Development, Biology Products, Elsevier Inc., for her unfailingly cheerful and strong support and great belief in this project. She made it fun!

To Ancha Baranova, associate professor, School of Systems Biology, George Mason University, who helped us get real and produce a workbook that would be effective for both students and faculty.


I would also like to thank Can Kural, one of Dr. Baranova's Ph.D. graduate students, for his greatly appreciated, hands-on feedback and workflow contributions.

To our staff here at Elsevier—including Hongbao Cao, senior bioinformatician; Pat Morgan, product marketing manager; Kim Gordon, product marketing manager; Anton Yuryev, senior scientist; Maria Shkrob, life science consultant; and Andrey Kalinin, head of MedScan Semantics—for their substantive contributions to this workbook either directly or as I borrowed from their previous good work using the Pathway Studio software. I am indebted to each of them for their professional expertise, sound advice, and great friendship.

ADDITIONAL INFORMATION ABOUT RELATIONS

Each relation type is assigned a distinct color

Positive or negative effect for the relation are indicated by arrow head. Relations have arrows to indicate directionality (except Binding).

BUILD PATHWAY WIZARD

Find Shortest Path for a Pair of Entities: find relations between two selected entities on the network diagram, adding intermediate entities as needed to form the connection.

Expand Pathway: find entities directly connected to the entity / entities selected on the network diagram from the database.

Find Common Targets: find target(s) that are regulated by at least two or more of the selected entities on the network diagram.

Find Common Regulators: find regulator(s) that regulate two or more of the selected entities on the network.

EXPERIMENTAL DATA ANALYSIS

 GSEA
 Gene Set Enrichment Analysis ranks experiment results by the absolute value of the fold change and identifies known gene sets (pathways and ontologies) that are statistically enriched. Tool name: Gene Set Enrichment Analysis.

 Sub-Network Enrichment Analysis is an extension of GSEA where the "gene sets" used in the enrichment analysis are small regulatory networks calculated de novo from the database by the algorithm. Identifies major regulators (proteins, miRNAs)

or small molecules), binding networks, metabolomics targets, enriched diseases and cell processes. **Tool name:** Sub-Network Enrichment Analysis. Enrichment analysis that does NOT include experimental values when calculating

Fisher's Exact Test Exact Test

EXPERIMENTAL DATA ALGORITHM

60d 5001 ... 60d 5001 ... Name Class: strain Class: age COPGI 1.45907E-J ATP6V0D1 6.78479E-1 GOLGA7 3.90912E-2 1.90234E-1 PSPH TRAPPCA 4.96238E-1 DPM2 9.594206-1 PSM85 0.12114 7.96351E-1 1.432168-1 DHRS1 PPMLA 5.00242E-0 Gm12396 5.25581E-2 ANAPCI 6.59616E-1 MRPL43 1.08986E-1 XPO7 3.79844E-1 2.34582E-2 NMT1 ATGS 7.19968E-1 MTTF2 1.36343E-1 5.56361E-1 RAB14 PSAP 6.76258E-1 UBE2GI 9.71774E-2 Zkscani 6.71391E-1 MRPL27 1.72493E-1 DLG1 6.24275E-1 CAND 9.47253E-2 4.64684E-1 3.86426E-1 DERL WARS PSMAS 2.280678-4 SARIA 3.560958-4 G38P2 0.163685 6.47731E-1 COLM 2.13203E-1

Name

AKT1

V 3 MYFS

🖌 🌏 1GF1

V J HDACI

V 🕑 MYD88

V 🌏 TNF

SNCA

ATP2A1

V 🥪 DRD2 V 🌏 PPARGCLA

CAMIN2

🖌 🌙 AGT

V 🥥 TLR4

🗸 🌙 INS

🖌 🌙 ПGA2

V J TGFB1

V 😸 DYSF

V 😖 BGN

MTOR

V 😸 NR3CI

CDKN2A

Description
 Descript

🗸 🌏 IL10

MAPK3

✓ 🥥 SBK2
 ✓ 🥥 LEP

🖌 🌙 TP73

V 🌙 THRA

BCL2L1

HIF1A

De novo user-defined sub-networks: expression regulators, miRNA regulators, binding networks, metabolomics targets, disease and cell process enrichment.

ENRICHED GENE SETS RESULTS

Known Gene Sets:

Known Gene Sets:

Mammal: Cell Process Pathways, Disease Collections (pathways and groups), Expression Targets Pathways, Immunological Pathways, Metabolic Pathways, Nociception Pathways, Signaling Pathways, Gene Ontology, Pathway Studio[®] Ontology, Chromosomal localization enrichment.

Plant: AraCyc Pathways, Arabidopsis Signaling Pathways, MaizeCyc Pathways, RiceCyc Pathways, Plant Ontology, Pathway Studio[®] Ontology, Gene Ontology.

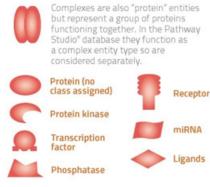
Fisher's

De novo user-defined sub-networks: expression regulators, miRNA regulators, binding networks, metabolomics targets, disease and cell process enrichment.

http://help.elsevier.com/app/pathway_select/p/9048

PathwayStudio* is a trademark of Elsevier Inc.

ENTITY TYPES


(mammal, mammal+CE+Dfx, and plant database)

*Container Entities – these are valid entities but also can have proteins mapped to them. You can see the proteins for the container entities in the "child concepts" in the property records for the specific entity.

PROTEIN SUB-TYPES

(mammal, mammal+CE+Dfx, and plant database)

QUICK REFERENCE

Binding	direct physical interaction between two molecules.	DATABA (added to M	
ChemicalReaction	enzyme catalyzed reaction involving small molecules.	Additional relat	
DirectRegulation	influences target activity by direct physical interaction (excluding promoter binding interactions).		Ci ai pi a
Expression	regulator changes protein abundance by affecting levels of transcript or protein stability.	Quantitative Change	di fu m
miRNAEffect	the inhibitory effect of a miRNA on its mRNA target.		Q S A
Regulation	changes the activity of the target by an unknown mechanism (may be direct or indirect). This is a less specific relation type than others provided.		Gingertop
MolSynthesis	regulator changes the concentrations of the target (usually a small molecule target).	Genetic Change	FID
MolTransport	regulator changes the localization of the target (molecular translocation, export, import etc.).		A m Id
PromoterBinding	regulator binds to the promoter of a gene.		CC m of
	regulator changes the modification of the target molecule, usually by a direct interaction. Filtering Field Name: Mechanism	Biomarkers	
ProtModification	Sub-Categories: acetylation, cleavage, deacetylation, demethylation, dephosphorylation, direct interaction, methylation, phosphorylation, posttrascriptional inhibition, proteolysis, ubiquitination.	State Change	D Cltr st ed pcl
	AL DATA IN		FTS
Added to Mar		Functional Association	D at di oi D si
 Relations betwee and diseases/ce 	en non-naturally polites (small	Clinical Trials	D re ci a gip si

NAL DATA **ISEASEFX™** SE

ammal)

	DiconcoEville
Additional relation types in	Diseaser X :

	Quantitative Change	Changes in abundance/ activity/expression of a gene/ protein/small molecule in a disease state (between disease-protein/complex/ functional class/small molecules). Filtering Field name: Quantitative Change Sub-Categories: Expression, Abundance, Activity
	Genetic Change	Genetic changes in a gene in a disease state such as gene deletions, amplifications, mutations or epigenetic changes (between disease- protein/complex/functional class). Filtering Field Name: Change Type Sub-Categories: Gene Deletion, Mutation, Gene Amplification, Epigenic methylation
	Biomarkers	Identification of proteins / complexes/functional classes/ metabolites that are prognostic or diagnostic biomarkers for a disease (between disease- protein/complex/functional class/naturally occurring small molecules). Filtering Field Name: Biomarker Type Sub-Categories:
-	State Change	Diagnostic, Prognostic Changes in a protein's post- translational modification status or alternative splicing events associated with a disease (between disease- protein/complex/functional class). Filtering Field Name: Change Type Sub-Categories: Alternate Splicing, Phosphorylation
	Functional Association	Different types of functional associations between a disease and a cellular process or another disease (between Disease – Cell Process) (no sub-types).
	Clinical Trials	Disease/cell process relation representing clinical trials conducted for a drug against a disease (from ClinicalTrials. gov) (between Disease/Cell Process – Small Molecule) (no sub-types).
- 1		

http://help.elsevier.com/app/pathway_select/p/9048

Table of Contents

PREFACE			xiii
ACKNOWLEDGEMEN	ITS		ii
QUICK REFERENCE			xv
MODULE 1	Intro	duction to Pathway Studio	1
	1.1	Volume of Scientific Literature is Exploding	. 2
	1.2	How Does It All Work	. 3
	1.3	Where Does It All Come From	. 4
	1.4	Information Extraction versus Information Retrieval	. 5
	1.5	Pathway Studio NLP: Entities and Relations	
	1.6	Pathway Studio: Networks and Pathways	
	1.7	Proteins/Genes Associated with Schizophrenia: Relation Table View	
	1.8	Drill Down!	
	1.9	Pathway Studio Databases Grow and Evolve: Domain Addition	
	1.10	Have You Seen This Cell?	
	1.11	Defining Cell Types: from Inconsistent Names to Standard Names	
	1.12	Cellular Biomarkers for Pre–eclampsia	
	What	did you learn today?	. 11
		Questions 1	
MODULE 2	Pre-e	clampsia, a disease-centric analysis	13
	2.1	Introduction	. 14
	2.2	Proteins Related to Pre-Eclampsia	. 15
	2.3	MiRNAs Affecting FLT1 Gene Expression	17
	2.4	Sub-Network Enrichment Analysis – Common Expression Regulators	. 18
	2.5	Small Molecule Regulators of Pre-Eclampsia	
	2.6	Drugs in Clinical Trials	
	Study	Questions 2	. 26
	How	Do IGene/Protein Expression:	
	Exerc	ise 2.1: Find proteins (transcription factors) that bind to the promoter of a gene(s)	· 27
	Exerc	ise 2.2: Find predicted miRNAs that may regulate expression of a gene(s)	· 27
		ise 2.3: Find known miRNAs that regulate expression of a gene(s)	
		ise 2.4: Find proteins that are involved in the expression of a gene(s)	
		ise 2.5: Does a group of genes share common expression regulators? ise 2.6: Does a group of proteins regulate expression of similar gene(s)?	
			~7

MODULE 3 Variant Analysis

3.1	Introduction	31
3.2	The dbSNP Database	32
3.3	Hodgkin's Lymphoma—Deleterious SNPs	32
3•4	Biological—DiseaseAssociations	33
3.5	Functional Impact Filter	34
3.6	Export Genes to Pathway Studio	36
3.7	Associate Genes with Hodgkin Disease	40
3.8	Sub-Network Enrichment Analysis, Disease and Cell Process	41

How Do IPhysical Interaction with Proteins:	47
Exercise 3.1: Find proteins that bind to a protein?	47
Exercise 3.2: Find small molecules that bind to a protein?	47
Exercise 3.3: Find proteins that regulate a protein through a direct physical interaction?	48
Exercise 3.4: Find small molecules that regulate a protein through direct physical interactions?	48

MODULE 4 Toxicology Workflow

Study Questions 3

Identify Proteins Most Frequently Targeted by Cholestasis-Inducing Drugs	63
Using the Interactive Network Filter	59
Find All Proteins Inhibited by Cholestasis Related Drugs	57
Filter Small Molecules for Drugs Only	52
Map Small Molecules Inducing Cholestatic	51
The Cytochrome P450 Gene	50
Introduction	50
	The Cytochrome P450 Gene Map Small Molecules Inducing Cholestatic Filter Small Molecules for Drugs Only Find All Proteins Inhibited by Cholestasis Related Drugs Using the Interactive Network Filter

How Do I Protein Modification(s):	71
Exercise 4.1: Find proteins(s) that acetylate/deacetylate a protein?	71
Exercise 4.2: Find protein(s) that cleave a protein?	71
Exercise 4.3: Find proteins(s) that methylate/demethylate a protein?	72
Exercise 4.4: Find protein(s) that phosphorylate/dephosphorylate a protein?	72
Exercise 4.5: Find protein(s) that ubiquitinate a protein?	72

46

94

MODULE 5	Variant Analysis II	74
	5.1 Import Variant Data (.vcf files)	
	5-3 Exploring the Biology of Apoptosis-related Genes	
	5-4 Variant Analysis of Multiple Genomes	81
	5-5 Import Genotypes and Analyze Case versus Controls	. 84
	5.6 Investigate Biological Functions for Selected Genes	. 84
	Study Questions 5	91
	How Do I Relations localized in a tissue/organ/cell type/cell line:	92
	Exercise 5.1: Find relations that are known to be found in a specific organ?	92
	Exercise 5.2: Find relations that are known to be found in a specific tissue?	92
	Exercise 5.3: Find relations that are known to be found in a specific CellType?	93
	Exercise 5.4: Find relations that are known to be found in a specific CellLineName?	93

MODULE 6

Gene Expression Data Analysis

6.1	Introduction	95
6.2	Filter Probes by Value	97
6.3	Explore Enriched Pathways	98
6.4	What exactly is SNEA doing, anyway?	100
6.5	Small Molecule Inhibitors of Diseases and Genes	102
6.6	Small Molecules in Clinical Trials	107

Study Questions 6

How Do I Finding Connections between entities not directly connected:	110
Exercise 6.1: Can two proteins not directly connected, be connected through	
protein / small molecule (s)?	111
Exercise 6.2: Can two proteins not directly connected, be connected through	
association to diseases/cell(s)?	111

MODULE 7

Biomarker ID and Drug Repurposing

7.1	Introduction	113
7.2	Zika Virus Use Case Workflow	. 114
7•3	SNEA on Zika Virus Up-regulated Genes versus Diseases	. 115
7•4	Diseases Involving Disorders of Glucose Metabolism	116
7•5	Identifying Major Regulators	117
7.6	Using the Interactive Network Filter for Better Specificity	119
7.7	Identify Major Therapeutic Point of Intervention	121
7.8	Mapping Candidate Drugs Both In and Outside of Current Clinical Trials	123
Study	y Questions 7	131
How	Do I: Protein /Small Molecule Transport:	132
Exerc	ise 7.1: What protein mediates the translocation of a protein or small molecule?	.132
Exerc	ise 7.2: What small molecule mediates the translocation of a protein?	.132

MODULE 8 Cancer Immunotherapy

8.1	Introduction	134
8.2	Secreted Protein of Melanoma Cells	137
8.3	Cells Inhibited by Melanoma Proteins	141
8.4	Cells Inhibiting Melanoma Cells	146
8.5	Integrating Three Datasets	147
8.6	Closing the Loop!	148
8.7	Determining the Most Connected Entities	L49
8.8	TGFB1 as a Therapeutic Target	151
8.9	TGFB1 in Clinical Trials	152
8.10	Fresolimumab	154

Study Questions 8

How Do I	Proteins/Small molecules involved in chemical interactions:	158
Exercise 8.1:	: What enzymes are involved in a chemical reaction with a small molecule?	159

160

MODULE 9

Finding support for your hypothesis

Study Questions 9

176

How Do I... Protein/Small Molecule associations with Diseases and Cell Processes:

Exercise 9.1: What proteins are known to be associated with a disease or cellular process?	177
Exercise 9.2: What small molecules are associated with a disease or cellular process?	177
Exercise 9.3: What proteins are known to change in expression, activity or abundance in a disease?	178
Exercise 9.4: What small molecules are known to change in abundance in a disease?	178
Exercise 9.5: What proteins with genetic mutations are associated with a disease?	.79
Exercise 9.6: What proteins or small molecules are diagnostic for a disease?	79
Exercise 9.7: What proteins or small molecules are prognostic for a disease?	80
Exercise 9.8: What protein phosphorylation/dephosphorylation events are associated with a disease?	80
Exercise 9.9: What protein/gene splice variants are associated with a disease?	81

MODULE 10

Understanding a Rare Disease

10.1	Definition of a Rare Disease	183
10.2	A Research Challenge	183
	SCA3 = Spinocerebellar Ataxia Type 3	
	SCA3, All Relations	
	Disease Description	
	ATXN 3; a Mendelian Gene Disorder	
10.7	ATXN3 and Cell Processes	191
	Therapeutic Treatments: Clinical Trials	
10.9	New Potential Targets	. 195

Study Questions 10

How Do I... Small Molecule abundance, Clinical Trials, Functional Associations between Diseases and Cell Processes:

	Exercise 10.1: What proteins regulate the synthesis or catabolism of a small molecule?
	Exercise 10.2: What small molecules/drugs have been tested in clinical trials for a disease?
201	Exercise 10.3: What cellular processes are associated with a disease?

MODULE 11 Progeria and Aging

11.1	Introduction	204
11.2	Hutchinson-Gilford progeria syndrome (HGPS)	204
11.3	Progeria, cancer, and aging	205
11.4	Progeria, All Relations	206
11.5	Progeria, cancer, and aging—shared relations	206
11.6	Progeria gene expression data	210
11.7	Progeria progression genes	216
11.8	Progression genes, SNEA, expression regulators	217
11.9	The proteasome endopeptidase complex and progeria	218
	Questions 11 Do I Cell Interactions:	221
Exerci	ise 11.1: What is the role of a cell in disease/clinical parameter?	222
Exerci	ise 11.2: How does a disease affect a certain cell type?	222
Exerci	ise 11.3: What proteins affect cell function?	223
Exerci	ise 11.4: What small molecules affect cell function?	223
Exerci	ise 11.5: What proteins are expressed in a cell? What proteins are exposed at the surface	
	of the cell?	224
Exerci	ise 11.6: What proteins/small molecules are secreted from the cell?	224

APPENDIX 1	Data Import	227
	I.A Data Import from the Gene Expression Omnibus (GEO)	227
	I.B Data Import from a Tab Delimited File	231
	I.C Data Import for RNASeq Data	236
APPENDIX 2	Pathway Studio Data Model	241

Module 1

Introduction to Pathway Studio

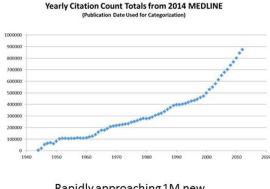
Contents

1.1	Volume of Scientific Literature is Exploding	2
1.2	How Does It All Work	
1.3	Where Does It All Come From	4
1.4	Information Extraction versus Information Retrieval	
1.5	Pathway Studio NLP: Entities and Relations	6
1.6	Pathway Studio: Networks and Pathways	7
1.7	Proteins/Genes Associated with Schizophrenia: Relation Table View	7
1.8	Drill Down!	9
1.9	Pathway Studio Databases Grow and Evolve: Domain Addition	
1.10	Have You Seen This Cell?	9
1.11	Defining Cell Types: from Inconsistent Names to Standard Names	
1.12	Cellular Biomarkers for Pre–eclampsia	10
What o	did you learn today?	11
Study	Questions 1	12

I LIKE IT.

WHAT

IS IT?


So people ask, "What is Pathway Studio?"

Actually that is not a trivial question. Pathway Studio, as the name implies, is first and foremost, a tool for biological pathway analysis. It can also be described as a molecular modeling software. Finally, and perhaps, most importantly, Pathway Studio is an exceptionally powerful tool for the direct data mining of the most relevant life science literature.

1.1 Volume of Scientific Literature is Exploding

In recent years, the volume of scientific literature has increased exponentially. The rise in the total number of yearly citations from MEDLINE through 2014 is approaching more than one million new citations each year.

The volume of life scientific literature is exploding

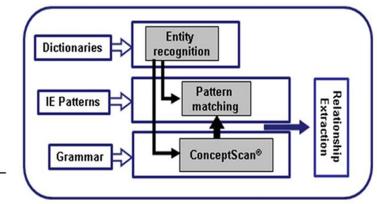
Rapidly approaching 1M new citations/year in Medline –

One way is to automatically extract relevant information from scientific publications on a massive scale

So the problem for scientific researchers is how to keep up. Even within their specific domains of interest, scientific researchers can be overwhelmed by the sheer volume of ongoing publications.

Elsevier deals with this problem by automatically extracting relevant information from scientific publications on a very large scale. It does this using its proprietary NLP MedScan technology.

1.2 How Does It All Work?


How does it all work?

Natural language processing (NLP)

- syntactic and semantic analysis of text
- synthesize a structured representation.

Essential facts are extracted

- predefined fact types
- information triplets (subjectverb-object).

Domain ontologies

identify types, properties, and interrelationships of relevant entities in the biomedical literature.

NLP is a collection of methods for the semantic analysis of unstructured text that allows for the extraction of specific items or facts of scientific interest. Basic NLP works by recognizing and capturing information triplets in the form of subject-verb-object statements. These triplets are the basic unit of NLP technology. The recognition of these triplets is referred to as syntactic analysis (that is, recognition of these relationships in a sentence). All the different ways in which a single gene or protein could be named, for example, is referred to as the dictionary. This is one of the very powerful assets in the MedScan technology as it recognized must be understood in the context of particular scientific domains and definitions, and this process is referred to as semantic analysis. The definition of these domain ontologies is part of the NLP art.

1.3 Where Does It All Come From?

So, first things first, where does it all come from? Well, it comes from more than 26 million abstracts from MEDLINE and more than four million full-text journal articles from Elsevier and other major scientific literature publishers. This has resulted, to date, in more than seven million unique relations or facts supported by more than 42 million individual references or articles. The volume and timeliness (the database is updated weekly) certainly qualifies this information as "Big Data."

Where does it all come from?

Big Data

26M+ abstracts from Medline® and 10,000 journal titles covered

4M+ **full text journal articles** from Elsevier and other leading publishers

6.6M+ **unique relations** (biological facts) supported by 41M+ references (articles)

Updated weekly

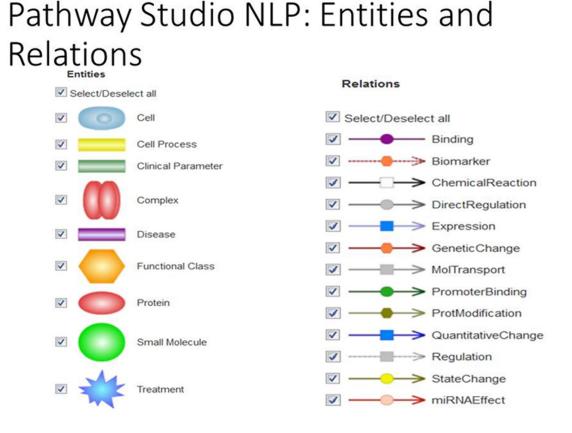
1.4 Information Extraction versus Information Retrieval

So when we talk about information extraction (IE), how do we distinguish that from information retrieval? It's easy! Information retrieval is what you typically get from an Internet search based on key words, for example, where the best documents are displayed in your search results. This is fine and many search engines are excellent, but you still have to sift through all the documents for the information that you're looking for and it can quickly become an overwhelming task. Information extraction, on the other hand, uses NLP technology to basically go from unstructured text to a structured knowledge representation (often while keeping the links back to where the information was extracted from, as in the case with Pathway Studio), which can then be curated into large databases of information.

Information Retrieval (IR)	Information extraction (IE)		
Returns documents.	Returns facts.		
Is a classification task (each document is relevant/not relevant to a query).	Is an application of natural language processing, involving the analysis of text and synthesis of a structured representation.		
Can be done without reference to syntax (treating query and indeed the documents as merely a "bag of words").	Is based on syntactic analysis and semantic analysis		

Information Extraction (IE) vs Information Retrieval (IR)

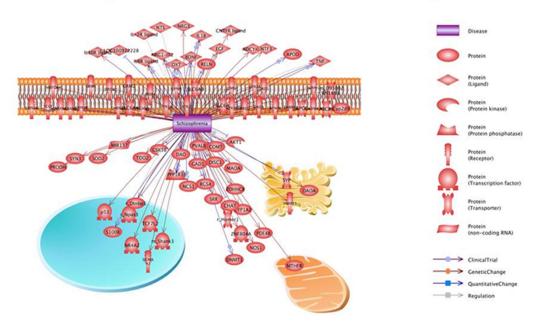
As an example of how all this works, suppose you are reading through an abstract on MEDLINE, and you come across this sentence: "We have previously shown that ETS1 can activate GM-CSF in Jurkat T cells." The MedScan NLP technology will recognize that there is an activation statement in this sentence and that it combines two objects, in this case, genes or proteins. The NLP triplet then is an activate relation, which combines ETS1 and GM-CSF and preserves the direction of that interaction (ETS1->GM-CSF). It will also preserve the contextual information for this relation, which, in this case, is that this interaction was observed in Jurkat T cells.



We have previously shown that ETS1 can activate GM-CSF in Jurkat T cells.

1.5 Pathway Studio NLP: Entities and Relations

The Pathway Studio database is constructed as a series of classic network interactions. Each interaction is called a relation and is composed of nodes, which are called entities, and edges, which are called relations or relation types. These relations are essentially the curated NLP triplets and can be extended in a network on the basis of common nodes. Shown here are examples of entity types such as Proteins, Small Molecules, and Cells, and common relation types such as Biomarker, Expression, and QuantitativeChange. This combination of entity and relation types allows for enormous flexibility in capturing life science content.



Module 1: Introduction to Pathway Studio | 1.5 Pathway Studio NLP: Entities and Relations

1.6 Pathway Studio: Networks and Pathways

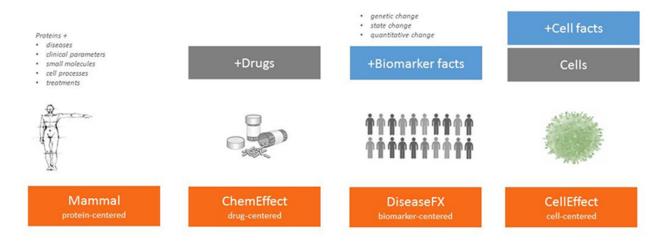
An example of a constructed Pathway Studio pathway or network is presented here in this Graph View illustration of all the genes and proteins related to the disease schizophrenia, which have a minimum number of supporting articles equal to or greater than 10. The accompanying legend illustrates the different icons used to represent the various entity types such as disease and proteins. In this case, protein subtypes are also indicated by special icons such as the diamond-shaped forms that indicate protein ligands seen at the exterior of the cell. This particular visualization is displayed on the backdrop of a standard cell compartmentalization view.

Pathway Studio: networks and pathways

1.7 Proteins/Genes Associated with Schizophrenia: Relation Table View

The Relation Table View shown here allows the user to inspect each relation in a given network in tabular form and view all the available annotation information for each relation, such as the number of supporting articles. In this particular view, the relations have been sorted by the number of references in descending order. From this you can easily see that, at least currently, the most studied gene with regards to schizophrenia is COMT, or Catechol-O-methyltransferase, with 325 references. The relation type is GeneticChange, and the change type is mutation, suggesting that mutations in COMT gene are considered very important in the study of schizophrenia.

Relation	Object Type	Effect	QuantitativeType	Changeline	# of References	CellType	Title	Pub.
		cirect	Quantitativetype	ChangeType				
 Schizophrenia> COMT 	GeneticChange			mutation, mutation, mutation, m	325	Erythrocytes, Fibroblasts, Hepatoc	Schizophrenia from a neural circuitry p	200
- Schizophrenia> DISC1	GeneticChange			mutation, mutation, mutation, m	191	Embryonic Stem Cells, Epithelial C	Molecular mechanisms of stress-induc	. 200
Schizophrenia> NRG1-IT2	GeneticChange			mutation, mutation, mutation, m	159	Endothelial Cells, Interneurons, Le	Molecular cloning of a brain-specific,	. 200
Schizophrenia> BDNF	GeneticChange			mutation, mutation, mutation, m	155	APUD Cells, Endothelial Cells, Leu	Brain-Derived Neurotrophic Factor Val	. 200
Schizophrenia> DRD2	GeneticChange			mutation, epigenetic methylatio	130	Blood Platelets, Insulin-Secreting	Differential repression by freud-1/CC2	. 200
- Schizophrenia> HTR2A	GeneticChange			epigenetic methylation, mutatio	120	Blood Platelets, Neurons, dopami	Methylation and QTDT analysis of the	. 200
Schizophrenia> RELN	GeneticChange			epigenetic methylation, epigene	112	CD4-Positive T-Lymphocytes, Cajal	DNA (cytosine-5) methyltransferase inh	200
- Schizophrenia> DRD3	GeneticChange			mutation, mutation, mutation, m	104	CHO cell, Neurons, dopaminergic	\$33138 [N-[4-[2-[(3a5,9bR)-8-cyano-1,3a	200
- Schizophrenia> BDNF	QuantitativeChange		abundance, abundance, a		104	Interneurons, Neurons, dopamine	Brain-derived neurotrophic factor and	200
DRD2> Schizophrenia	Regulation				103	Lymphocytes, Neurons, dopaminer	Change of dopamine receptor mRNA e	200
- Schizophrenia> r_Dtnbp1	GeneticChange			mutation, mutation, mutation, m	100	Blood Platelets, Interneurons, Neu	Finding schizophrenia genes., Dysbind	200
→ HTR2A> Schizophrenia	Regulation				72	Neurons, Pyramidal Cells, dopami	Preclinical pharmacology of FMPD [6-fl	. 200
→ NRG1-IT2> Schizophrenia	Regulation				70	B-Lymphocytes, Interneurons, Leu	The genetic and neurobiologic compas	200
- Schizophrenia> MTHFR	GeneticChange			mutation, mutation, mutation, m	64	Erythrocytes, neural stem cells	Influence of maternal MTHFR A1298C p	201
DISC1> Schizophrenia	Regulation				61	Interneurons, Neurons, Oligoden	Finding schizophrenia genes., Cyclic n	. 200
→ BDNF> Schizophrenia	Regulation				60	Neurons, PBMCs, brain cell, dopa	The Brain-Derived Neurotrophic Factor	200
- Schizophrenia> RGS4	GeneticChange			mutation, mutation, mutation, m	57	Germ Cells, Neurons, Oligodendro	Regulators of G-protein signaling 4 in	200

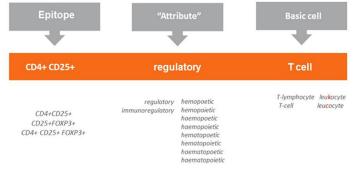

Any relation can be fully inspected from this table by double-clicking on it, which will open up the lower pane and show in detail all the references and the sentences from which this information was extracted. This is one of the great strengths of Pathway Studio, as all the evidence for a given relation is available for inspection immediately. It is even possible, by opening up the Document Identifiers & Links tab, for a reference to get links to either the PubMed abstracts or even directly to the full-text documents themselves (this would depend upon the subscription status of your institution).

As discussed before, domain knowledge is vital for the MedScan technology to correctly identify and interpret information extraction. Pathway Studio was originally designed as primarily a gene- or proteincentric database for the interpretation of gene expression for mammals (human, rat, and mouse). There is also a plant version for Pathway Studio. Over time, additional modules have been added to facilitate drug discovery research, including a drug database of more than 100,000 small molecules and accompanying new relation types (ChemEffect). Also added are more than 16,000 diseases and specific new relations (GeneticChange, QuantitativeChange, StateChange, and Biomarker) in order to facilitate new biomarker discovery (DiseaseFX). Most recently, a comprehensive new taxonomy has been added for the robust identification of more than 700 human anatomical cell types, including a major emphasis on precisely defined cells of the immune system (CellEffect).

1.8 Drill Down **Drill Down** Association between II.-18.-511C/T and II.-18A (B6bp) n repeats polymorphisms and schlzophrenia 2unardini R.Bocchio-Chiavetto, L.Scassellati, C.Bonvicni, C.Tura, G.B.Rossi, G.Perez, J., Gennarelli, M.(2003) Journal of Psychiatric Research References (40) Other Properties offections Relevant Sentences Document Identifiers & Links Other available information Col *At genetic level, associations have been described between functional polymorphisms in TNF-a and interlevien-10 (L-10) genes and sichicophrenia (), even though negative findings have been reported for L-10 gene (). [2] Tumor necrosis factor-a gene promoter polymorphisms in chronic schizophrenia Tan,E.C.;Chong,S.A.;Tan,C.H.;Teo,Y.Y.;Peng,K.;Mahendran,R.(2003) Biological Psychi Relevant Sentences Document Identifiers & Links Other available information "This study identified the -308 polymorphism in the TNFo gene promoter as a marker for susceptibility to schicophrenia in our Chinese population." [3] Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia. Boin, F. Zanardini, R., Pioli, R.; Altamura, C.A.; Maes, M.; Gennarelli, M. (2001) Mol Psychiatry Relevant Sentences Document Identifiers & Links Other available information "We studied the distribution of -G308A TNF alpha gene polymorphism in 84 schizophrenic patients and in 138 healthy volunteers. "Association between -G308A tumor necrosis factor alpha gene polymorphism and schizophrenia." Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia Marc.C.E.;lankog.L.F.;Lauder, J.M.;Lieberman, J.A.;Gilmore, J.H.(2001) Biological Psychiatry Relevant Sentences Document Identifiers & Links Other available information "The TH#-a gene is located on the short arm of chromosome 6 (5p21.3-21.3), a region linked to schizophrenia susceptibility, and a recent study indicates that the frequency of a Th#-a polymorphism (-G308A) is increased in patients with schizophrenia compared with control subjects."

1.9 Pathway Studio Databases Grow and Evolve: Domain Addition

Pathway Studio databases grow and evolve: domain addition

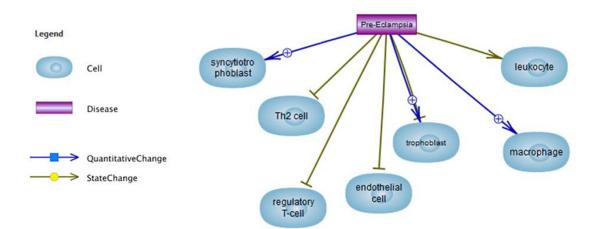

1.10 Have You Seen This Cell?

Have you seen this cell?

full name	T Regulatory Lymphocyte	
for short	T Regulatory cell	2
nickname	Treg	-
aka	Immunoregulatory T cell	
formerly known as	Suppressor T cell	
	CD3+ CD4+ CD25+ FOXF3 CD3+ CD25+ CD4+ FOXF3+	
scars and	CD4+ CD25+ CD25+ FOXF3+ FOXF3+ CD25+	
marks	CD4pos CD25pos	
IIIdi KS		

Immune cells in particular have been difficult to catalogue because of the wide variation in naming conventions used by scientists in their publications, as illustrated here for T-regulatory Lymphocytes.

Defining cell types: from inconsistent names to standard names


1.11 Defining Cell Types: From Inconsistent Names to Standard Names

The most reliable identification used by immunologists is to define the different immune cell types by their cell surface epitopes (identified by antibody mediated cell sorting [FACS] methods). All these possible terms have been carefully normalized by Elsevier (?) expert curators to allow the widest possible and most accurate identification of these cell types in the literature.

1.12 Cellular Biomarkers for Pre-eclampsia

An example of how they are used is shown in this figure linking the disease pre-eclampsia with key cell types including

Cellular Biomarkers for Pre-eclampsia

synctiotrophoblasts. These cell types form the epithelial covering of embryonic placental villi and act as the site for nutrient exchange between the embryo and the mother. It is believed that the synctiotrophoblasts are also the cell type that mediates the transmission of Zika virus from maternally infected macrophages across the placental barrier to infect the developing fetus. This can result in disastrous developmental defects including the characteristic microcephaly or small head phenotype of these infected babies.

What did you learn today?

- Pathway Studio is a pathway analysis tool, a type of molecular modeling software, and a great method for systematic data-mining of the scientific literature.
- The sources of the Pathway Studio knowledge base are [consider recapping the sources here].
- Natural Language Processing (NLP) is [consider recapping definition here].
- The difference between data retrieval and data extraction is [consider recapping definition here].
- Pathway Studio networks contain molecular entities and biological relations.
- Pathway Studio is constantly advancing through data expansion and domain additions (e.g. ChemEffect, CellEffect, and DiseaseFX).

Study Questions 1

- 1. What is the basic unit of NLP technology?
- 2. How many unique relations or facts are contained in the Pathway Studio database?
- 3. What is the difference between Pathway Studio data and a Google search?
- 4. What is the most abundant entity type in Pathway studio? What is the most abundant relation type in Pathway Studio? (Hint: use Pathway Studio Database Content under the Start tab).

Module 2

Pre-eclampsia, a Disease-centric Analysis

Contents

2.1	Introduction	14
2.2	Proteins Related to Pre-Eclampsia	15
2.3	MiRNAs Affecting FLT1 Gene Expression	17
2.4	Sub-Network Enrichment Analysis – Common Expression Regulators	18
2.5	Small Molecule Regulators of Pre-Eclampsia	21
2.6	Drugs in Clinical Trials	24
Study	Questions 2	26

How Do I....Gene/Protein Expression:

Exercise 2.1: Find proteins (transcription factors) that bind to the promoter of a gene(s)	27
Exercise 2.2: Find predicted miRNAs that may regulate expression of a gene(s)	
Exercise 2.3: Find known miRNAs that regulate expression of a gene(s)	
Exercise 2.4: Find proteins that are involved in the expression of a gene(s)	
Exercise 2.5: Does a group of genes share common expression regulators?	29
Exercise 2.6: Does a group of proteins regulate expression of similar gene(s)?	-

2.1 Introduction

Pre-eclampsia or preeclampsia (PE) is a disorder of pregnancy characterized by high blood pressure and a large amount of protein in the urine. The disorder usually occurs in the third trimester of pregnancy and gets worse over time. In severe disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. Preeclampsia increases the risk of poor outcomes for both the mother and the baby. If left untreated, it may result in seizures at which point it is known as eclampsia.

Pre-eclampsia usually begins after 20 weeks of pregnancy in a woman, whose blood pressure had been normal. It can lead to serious, even fatal complications for both mother and baby.

There may be no symptoms. High blood pressure and protein in the urine are key features. There may also be swelling in the legs and water retention, but this can be hard to distinguish from normal pregnancy.

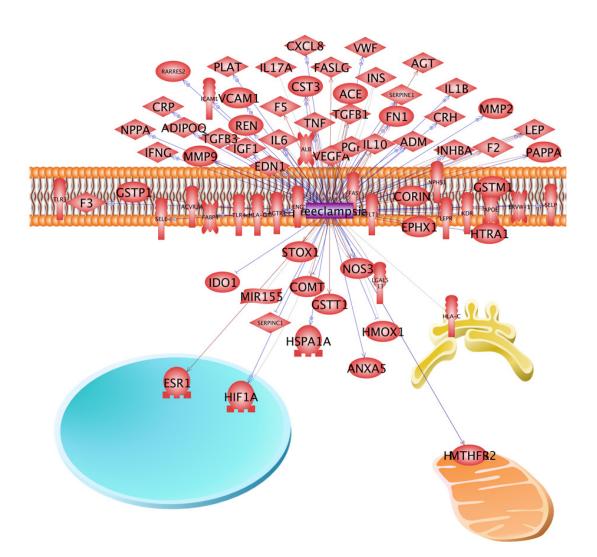
Pre-eclampsia

Also called: toxemia

A potentially dangerous pregnancy complication characterized by high blood pressure.

Rare

Fewer than 200,000 US cases per year

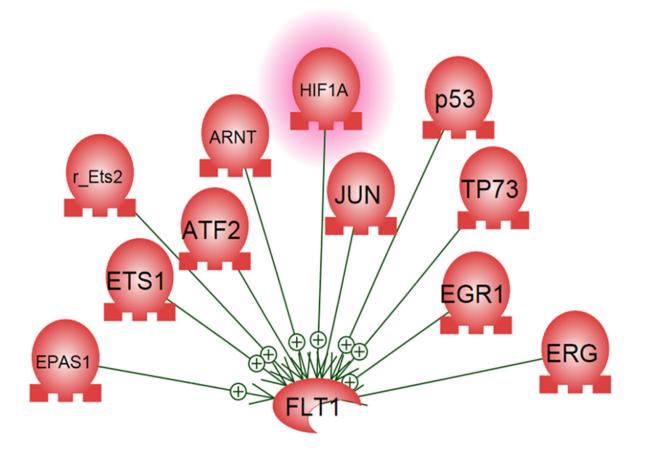

- Treatable by a medical professional
- Requires a medical diagnosis
- Lab tests or imaging always required
- Short-term: resolves within days to weeks

Pre-eclampsia can often be managed with oral or IV medications until the baby is sufficiently mature to be delivered. This often requires weighing the risks of early delivery versus the risks of continued pre-eclampsia symptoms.

2.2 Proteins Related to Pre-eclampsia

What are the most important proteins related to pre-eclampsia as found in the scientific literature?

Find all pre-eclampsia disease relations with protein as an entity type, select all reference >=10

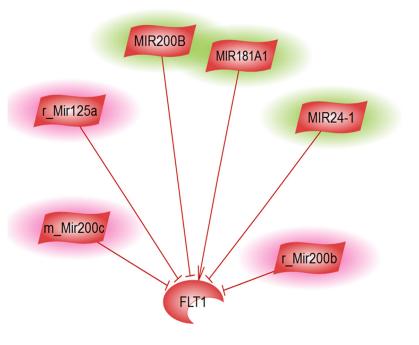


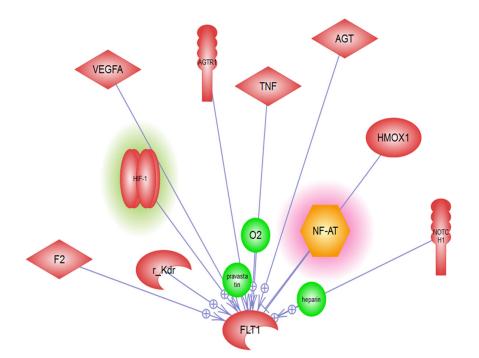
What is the single most highly cited protein related to pre-eclampsia and what is its most common transcription factor?

Select protein most highly cited in connection with pre-eclampsia (FLT1).

Find proteins (transcription factors) that bind to the promoter of FLT1.

Highlight most cited transcription factor for FLT1 (HIF1A).



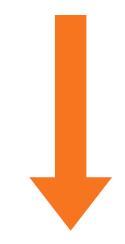

2.3 MiRNAs Affecting FLT1 Gene Expression

Are there any miRNAs that affect the expression of the FLT1 gene?

Find predicted miRNAs that may regulate expression of FLT1.

Highlight predicted (red) vs experimental (green) miRNAs for FLT1.

Find proteins, protein complexes, protein functional classes, and small molecules that are involved in the expression FLT1, either directly or indirectly (references >=10).

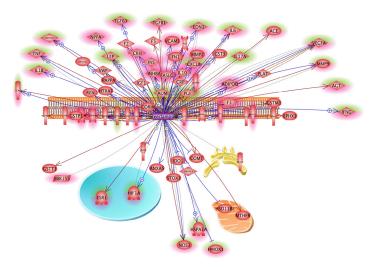

Highlight protein functional classes (red) and protein complexes (green).

2.4 Sub-Network Enrichment Analysis—Common Expression Regulators

Identify groups of genes (from the list of proteins most strongly associated with pre-eclampsia) that share common expression regulators using Sub-Network Enrichment Analysis (SNEA).

Enrichment Analysis of Select	ted Entities	
Input Objects:	CRP, LEP, IL8, F5, INHBA, ICAM1, NOS3, AGT, ADM, AGTR1, gelatinase B, EDN1, IL10R ligand, r_Eng, FLT1, ACE, Pre-Eclampsia, CRH, MIR155, REN, HLA-G, IL6R ligand,	•
Analysis Type:	Find Sub-Networks Enriched with Selected Entities	•
p-value ≤	0.05	
Min Overlap:	2	
	Include only overlapping entities in Pathways	
Max Networks:	100	
Neighbors:	Expression Targets	
	🔘 miRNA Targets	
	Chemical Expression Targets	
	Binding Partners	
	Protein Modification Targets	
	Disease Biomarkers (Quantity)	
	Disease Biomarkers (Mutations)	
	Proteins/Chemicals Regulating Diseases	
	Proteins/Chemicals Regulating Cell Processes	
	Custom Select types	

Under Custom Select types, use "Upstream" as the direction, "Protein" as the entity (seed), and "Promoter Binding" as the relation.

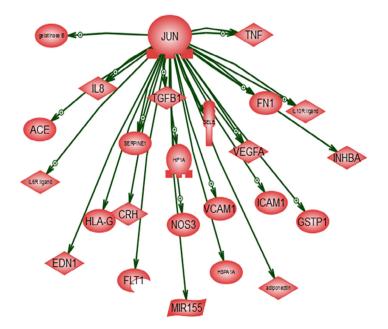


Name	Total # of Neighbors	Gene Set Seed	Overlap	Percent Overlap	Overlappi	p-value	Jaccard sin	Hit type
Downstream Neighbors of JUN	331	JUN	24	7	EDN1;INH	1.79E-19	0.069565	Downstre
Downstream Neighbors of HIF1A	248	HIF1A	17	6	EDN1;ADN	7.76E-13	0.063197	Downstre
Downstream Neighbors of ATF2	89	ATF2	12	13	ACE;HIF1A	1.5E-12	0.104348	Downstre
Downstream Neighbors of EP300	220	EP300	16	7	EDN1;VCA	1.89E-12	0.066116	Downstre
Downstream Neighbors of CEBPB	300	CEBPB	16	5	CRP;EDN1	2.16E-10	0.049689	Downstre
Downstream Neighbors of ETS1	170	ET\$1	13	7	VCAM1;A0	2.16E-10	0.066667	Downstre
Downstream Neighbors of FOS	171	FOS	13	7	VCAM1;M	2.33E-10	0.066327	Downstre
Downstream Neighbors of STAT3	309	STAT3	16	5	CRP;ADM;	3.36E-10	0.048338	Downstre
Downstream Neighbors of EGR1	232	EGR1	14	6	ACE;HIF1A	8.51E-10	0.054688	Downstre

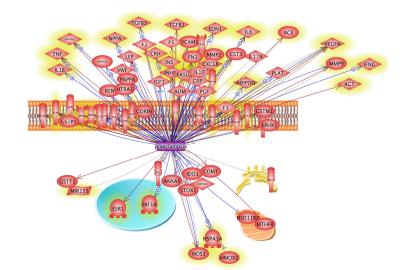
How many of the pre-eclampsia genes (from the first network in this module) share either of the top two FLT1 transcription factor regulators?

Highlight the pre-eclampsia genes for the two most common upstream expression regulators (JUN in red, HIF1A in green) as revealed in the SNEA analysis (See below for help).

Now for....Pathway Studio Trick #1!


This may not be obvious (at first!), but the way to highlight proteins/genes in a pathway view with information from another group is actually quite easy. Just follow the trail of bread crumbs below.

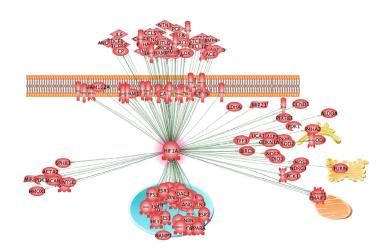
In the current example, a list of the most common upstream regulators for the pre-eclampsia-related genes were generated using the SNEA tool. The top two entries, which are sorted by p-value, in that list (as found in the table below the pathway viewer) are JUN and HIF1A.


Name	Total # of Neighbors	Gene Set Seed	Overlap	Percent Overlap	Overlappi	p-value	Jaccard sir	Hit type
Downstream Neighbors of JUN	331	JUN	24	7	EDN1;INH	1.79E-19	0.069565	Downstre
Downstream Neighbors of HIF1A	248	HIF1A	17	6	EDN1;ADN	7.76E-13	0.063197	Downstre
Downstream Neighbors of ATF2	89	ATF2	12	13	ACE;HIF1A	1.5E-12	0.104348	Downstre
Downstream Neighbors of EP300	220	EP300	16	7	EDN1;VCA	1.89E-12	0.066116	Downstre
Downstream Neighbors of CEBPB	300	CEBPB	16	5	CRP;EDN1	2.16E-10	0.049689	Downstre
Downstream Neighbors of ETS1	170	ET\$1	13	7	VCAM1;A	2.16E-10	0.066667	Downstre
Downstream Neighbors of FOS	171	FOS	13	7	VCAM1;M	2.33E-10	0.066327	Downstre
Downstream Neighbors of STAT3	309	STAT3	16	5	CRP;ADM;	3.36E-10	0.048338	Downstre
Downstream Neighbors of EGR1	232	EGR1	14	6	ACE;HIF1A	8.51E-10	0.054688	Downstre

You can view the overlapping genes from your target list with the list of all the potential targets. In this case shown below, the overlapping genes and potential targets of the JUN transcription factor are viewed by double-clicking on the particular list entry in the table, and....voila, now those genes (and those genes only) are displayed in the pathway viewer.

Downstream neighbors of JUN among the pre-eclampsia genes.

Now, here's the big trick! If you want to highlight just those genes in another pathway, all you have to do is: select and copy them, go to the other pathway (drum roll, please!), and ... select clipboard content and then highlight with the color of your choice (Hint: if you are going to highlight more than once, the second time use a mix-in contrasting color so you can see both highlights together).


See how easy that was? Now, why don't you try it with HIF1A!

2.5 Small Molecule Regulators of Pre-eclampsia

HIF1A is not only one of the most important regulators of the FLT1 gene—which is the most highly cited gene in reference to preeclampsia in the literature—it also appears to be a major regulator for a significant number (17/41) of all the pre-eclampsia associated genes.

This is beginning to look interesting, so what can be observed about the biological processes controlled by HIF1A?

Well, first of all, you could identify all the genes with promoters known to be bound by HIF1A.

Hint: Copy and paste HIF1A into new pathway, select HIF1A, select "Add Neighbors," (downstream), and select Protein as the entity type and Promoter Binding as the relation type.

Now you can ask yourself: of all the genes under the potential control of HIF1A, what are some of the most common biological processes involved?

Select all the genes from the HIF1A transcriptional network, go to Tools, select "Enrichment Analysis," Analysis Type = "Find Pathways."

Go to "Ontologies," choose "biological process" from the GO sets, and then select "Find."

Name	# of Entities	Expanded # of Entities	Overlap	Percent Overlap	Overlapping Entities	p-value 1	Jaccard similarity	Hit type
🗹 💼 response to hypoxia	249	250	41	16	SLC11A2, PPARA, ABCB	4.03737E-35	9.27602E-2	biological_process
🗌 📰 response to drug	494	495	44	8	ABCG2, GPX3, ABCB1, C	3.70069E-26	6.43275E-2	biological_process
positive regulation of cell proliferation	513	513	41	7	GPER, r_Sox9, NAMPT, N	1.27948E-22	5.81560E-2	biological_process
cellular response to hypoxia	105	105	21	20	SLC11A2, PMAIP1, PTGS	3.04355E-20	6.62461E-2	biological_process
response to organic cyclic compound	239	239	26	10	GPX3, ABCB1, NAMPT,	7.13389E-18	5.82960E-2	biological_process
🛛 📰 response to lipopolysaccharide	222	222	25	11	S100A9, SLCO1B3, SLC1	1.38156E-17	5.81395E-2	biological_process
negative regulation of apoptotic process	642	642	39	6	r_Sox9, NKX2-5, HIF1A,	2.27499E-17	4.66507E-2	biological_process
🗍 📰 positive regulation of transcription from RNA polym	846	846	44	5	NR1H3, r_Sox9, PPARA,	5.17094E-17	4.25121E-2	biological_process
aging	210	210	22	10	NTRK2, NTRK1, DDIT3, T	6.13156E-15	5.22565E-2	biological_process
positive regulation of apoptotic process	359	359	27	7	GPER, PMAIP1, ITGB1, S	1.75947E-14	4.77876E-2	biological_process

The most enriched GO biological process for the HIF1A transcriptome is...?

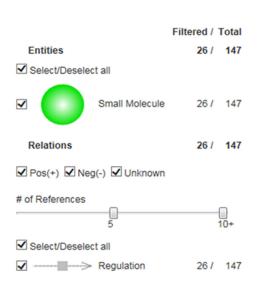
Of what diagnostic parameter (see introduction) of pre-eclampsia does this finding make the most sense? Discuss with class.

Are you ready for a little bit more?

What about the drugs and possible drug treatments that are used for handling patients (i.e. pregnant women) at risk for pre-eclampsia?

You have two quick ways (at least!) of investigating this question using Pathway Studio.

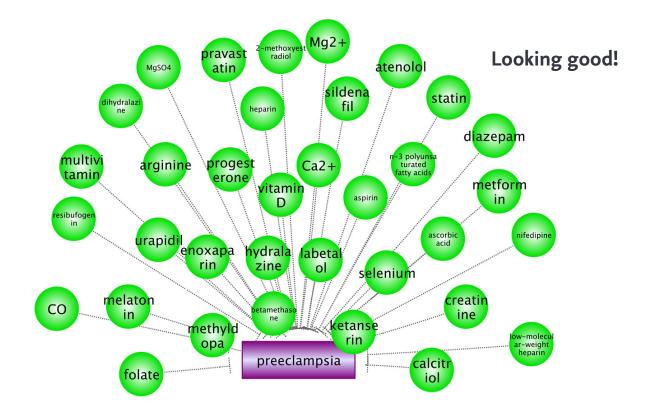
- 1. Test all small molecules associated in the literature with pre-eclampsia.
- 2. And then look for any clinical trials reported for pre-eclampsia treatments.



Create a new pathway using the pre-eclampsia disease entity as a starting point. Add small molecules as an entity type and relation = regulation, effect = negative.

Step 5: Setup Preview		
- Potential Connections		
Entites: 147		
Relations: 147		
Applied Entity Filters		
Small Molecule X		
Applied Relation Filters	5	
Regulation X	Regulation ("Effect" = 'n ×	
Negulation 🖶	Regulation (Effect = h	

This will still give you a lot of relations!


Interactive Network Builder

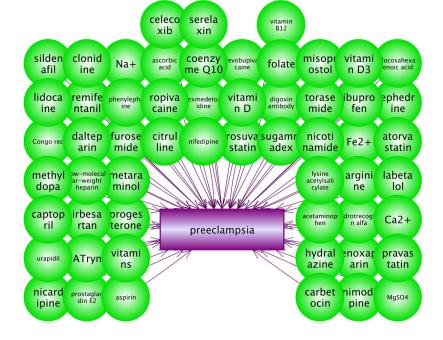
Filter that down a little bit by going to the "Interactive Network Builder" and selecting for relations with five or more supporting articles.

Now that's a little more manageable!

Next, see how the graph view looks.

If you look at the "Relation Table View" and sort by the highest number of references, you find...aspirin!

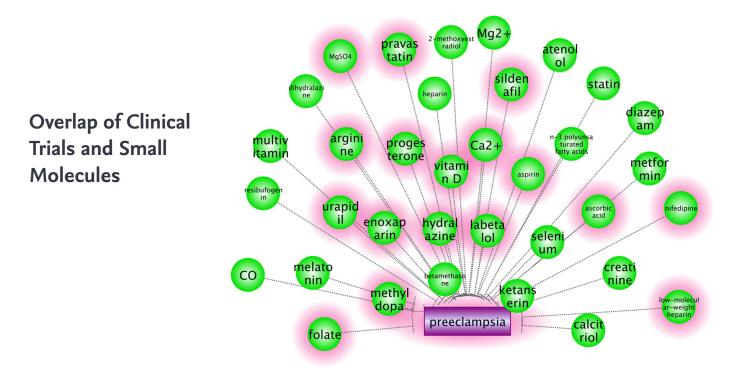
Try Googling aspirin and pre-eclampsia and tell the class what you find.


	•	Relation	Object Type	Effect	Mechanism	# of References
How is MgSO4	•	→ aspirin Pre-Eclampsia	Regulation	negative		197
used in the	•	→ MgSO4 Pre-Eclampsia	Regulation	negative		167
used in the	~	→ Ca2+ Pre-Eclampsia	Regulation	negative		94
treatment of	•	→ Mg2+ Pre-Eclampsia	Regulation	negative		66
	•	→ ascorbic acid Pre-Eclampsia	Regulation	negative		50
pre-eclampsia?	•	→ pravastatin Pre-Eclampsia	Regulation	negative		37
	~	→ arginine Pre-Eclampsia	Regulation	negative		30
	•	→ folate Pre-Eclampsia	Regulation	negative		24
	~	→ nifedipine Pre-Eclampsia	Regulation	negative		24
	•	→ heparin Pre-Eclampsia	Regulation	negative		22
	•	→ hydralazine Pre-Eclampsia	Regulation	negative		21
For what disease	•	→ low-molecular-weight heparin Pre	Regulation	negative		18
1	•	→ labetalol Pre-Eclampsia	Regulation	negative		16
condition was the	•	→ 2-methoxyestradiol Pre-Eclampsia	Regulation	negative		15
duure provestatio	•	→ methyldopa Pre-Eclampsia	Regulation	negative		14
drug pravastatin	•	→ ketanserin Pre-Eclampsia	Regulation	negative		13
originally	•	→ CO Pre-Eclampsia	Regulation	negative		13
Onginally	•	→ metformin Pre-Eclampsia	Regulation	negative		12
developed?	•	→ progesterone Pre-Eclampsia	Regulation	negative		10
	•	→ multivitamin Pre-Eclampsia	Regulation	negative		7
		- A Contract of the second				

2.6 Drugs in Clinical Trials

And finally, clinical trials!

Select small molecules, same as before, and for relation type, pick ClinicalTrial.



What are the most studied drugs in terms of number of clinical trials?

What is the rationale for the use of pravastatin in treating preeclampsia (requires linking out to the clinical trials record for answer)?

Hint: check Detailed Description field

PATHWAY STUDIO® Basic search for pro								
🔹 Start \Lambda Pre-eclampsia ×	💌 Start 🕼 Pre-eclampsia 🛛 🖾 Downstream Nei 🛛 💒 response to hy 👋 🖾 Small molecule							
🔚 Save 🔹 🍸 Filters 👻 🛄 View 👻 🛄 Select 💌 🛅 Edit 💌 🖍 Undo 🔹 👚 Export 👻								
50 Selected Deselect All								
Relation	Object Type	# of References						
MgSO4> Pre-Eclampsia	ClinicalTrial	11						
💌 — aspirin> Pre-Eclampsia	ClinicalTrial	10						
💌 — methyldopa> Pre-Eclampsia	ClinicalTrial	6						
Iabetalol> Pre-Eclampsia	ClinicalTrial	5						
arginine> Pre-Eclampsia	ClinicalTrial	4						
ephedrine> Pre-Eclampsia	ClinicalTrial	4						
nifedipine> Pre-Eclampsia	ClinicalTrial	4						
misoprostol> Pre-Eclampsia	ClinicalTrial	4						
Ca2+> Pre-Eclampsia	ClinicalTrial	4						

Wait! Before you go, what did you learn today?

- "Network Builder" can be used to add relations to entities.
- "Relation Table View" and "# of References" can be used to find most cited relations.
- You can find transcription factors that bind to gene promoters or miRNAs that affect gene expression.
- Enriched upstream regulators can be identified for a group of genes using Sub-Network Enrichment Analysis (SNEA).
- Possible drug treatments can be identified using Small Molecules and Clinical Trials.

And that's a lot!

Study Questions 2

- 1. Identify genes/proteins that are linked to OCD. How many of them?
- 2. Identify drugs/small molecules linked to OCD. How many of them?
- 3. Identify transcription factors of protein FLT1. List top three by reference number.
- 4. What is the most cited transcription factor of FLT1?
- 5. Find miRNAs that regulate the protein FLT1? List top five by reference number. Which are predicted? How many are from the literature? List top two by reference number.
- 6. Identify the number of small molecules and protein functional classes related to the expression of the protein FLT1. List top three by reference number. How many have a negative effect on expression? How many have a positive effect on expression? (Hint: use Interactive Network Filter).
- Identify top five enriched diseases by p-value using genes linked to pre-eclampsia (10+ references only). (Hint: use SNEA).
- 8. Identify top five by p-value enriched GO terms by p-value for genes linked to pre-eclampsia (10+ references only)? (Hint: use GSEA).

How Do I ... Gene/Protein Expression:

Exercise 2.1: Find proteins (transcription factors) that bind to the promoter of a gene(s)?

Finds transcription factors for genes (directly binding to promoters)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "Promoter Binding"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 2.2: Find predicted miRNAs that may regulate expression of a gene(s)?

Finds predicted miRNA targets (from public prediction datasets - identified in "source" annotation field of the relation)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "miRNAEffect"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Switch to the Relation Table view: add "Source" as column to the table and sort on that column. Relations with Source annotation of public datasets "miRanda" "TargetScan" "PicTar" "TarBase" etc. are predicted miRNA targets.

Exercise 2.3: Find known miRNAs that regulate expression of a gene(s)?

Finds literature confirmed miRNA targets. (Differentiate from predicted miRNAEffect relations by reference annotation)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: "Protein" Relations: Select "miRNAEffect"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Switch to the Relation Table view, add "Sentence" as a column to the table and sort on that column. Any relation with a supporting sentence is a literature confirmed relation.

Exercise 2.4: Find proteins that are involved in the expression of a gene(s)?

Finds both direct expression regulators (promoterbinding) and proteins with possibly an indirect effect on expression

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "Promoter Binding + Expression"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 2.5: Does a group of genes share common expression regulators?

Finds common expression regulators that impact multiple targets in a select group. If Promoter Binding + Expression gives too many results, try examining only Promoter Binding. If results are too low, use the back button before you launch Interactive Network Builder to step 2 and expand to 2 or greater steps

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Expression Regulators

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 2.6: Does a group of proteins regulate expression of similar gene(s)?

Finds targets that share a common regulator from a select group. If Promoter Binding + Expression gives too many results, try examining only Promoter Binding. If results are too low, use the back button before you launch Interactive Network Builder to step 2 and expand to 2 or greater steps.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Expression Targets

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 3

Variant Analysis I

Contents

3.1	Introduction	31
3.2	The dbSNP Database	32
3.3	Hodgkin's Lymphoma—Deleterious SNPs	32
3•4	Biological—DiseaseAssociations	33
3.5	Functional Impact Filter	34
3.6	Export Genes to Pathway Studio	36
3.7	Associate Genes with Hodgkin Disease	40
3.8	Sub-Network Enrichment Analysis, Disease and Cell Process	

Study Questions 3

How Do IPhysical Interaction with Proteins:	47
Exercise 3.1: Find proteins that bind to a protein?	
Exercise 3.2: Find small molecules that bind to a protein?	
Exercise 3.3: Find proteins that regulate a protein through a direct physical interaction?	18
Exercise 3.4: Find small molecules that regulate a protein through direct physical interactions?4	8

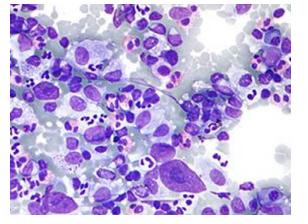
3.1 Introduction to Variant Analysis in Genomic Sequence Data

The dbSNP database [http://www.ncbi.nlm.nih.gov/snp] currently has more than 200 million known human SNPs, or single nucleotide polymorphisms. While many SNPs may have no biological impact, and others may simply provide the basis for benign differences between individuals, it is the variations in human genomic sequences that lead to medically relevant phenotypes that are of great interest to researchers. These include DNA nucleotide changes that cause diseases, greater susceptibility to medical conditions, and variations in responses to medications.

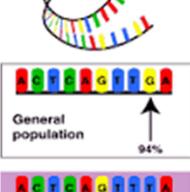
3.2. The dbSNP Database

In this training module, you will learn to search the dbSNP database to find variants known to be associated with a specific disease.

As there are a large number of SNPs in any given genome, identifying specific variants of interest involves applying multiple filters, which can be based on a variety of factors such as:

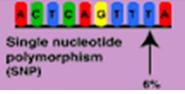

- Is the mutation within the coding region of a gene?
- Does the SNP affect the protein's sequence?
- Is the mutation in a specific protein's amino acid position known to be generally conserved?
- Is the protein mutation within a region that is known to be conserved across species other than just human?
- How common or frequently is a particular SNP found within the standard 1000 Genome Project reference data? [http://www.1000genomes.org/

3.3 Hodgkin's Lymphoma—Deleterious SNPs


Hodgkin's Lymphoma (HL) is a type of lymphoma in which cancer originates from a specific type of white blood cells called lymphocytes.

A history of infectious mononucleosis due to infection by Epstein–Barr virus (EBV) may increase risk of HL, but the precise contribution of Epstein–Barr virus remains largely unknown.

Hodgkin's Lymphoma is characterized by the orderly spread of disease from one lymph node group to another and by the development of systemic symptoms with advanced disease.



Micrograph showing Hodgkin's Lymphoma (Field stain)

Polymorphism

"Poly" many "morphe" form

Let's find some SNP(s) that are potentially deleterious to the function of proteins that are known to be associated with Hodgkin's Lymphoma.

S NCBI

Let's get started!

And what better place to begin than at the beginning,

in this case, the Pathway Studio Start Tab.

Click on the Variation database icon:

Which will bring you to the variation database (from the dbSNP database) and it looks like this:

If you check the lower right-hand edge of your screen you will see the message displaying "1-40 of 201354832".

That's because there have been over 200 million SNPs identified and reported to date across the world.

Along the top ruler are the filters that we will use to drill down for getting useful data.

	THWAY S											
			unctional Im	pact	V Freque	ncy 🖓 Biolo	gical Associations	🖓 Database Identif	iers	👚 Expo	rt Copy Gene	s 👻 Clear Selectio
												Clear
	rsId	Ch	Location	ref	Alt.	Gene	Gene region	Transl. Impact	GERP++ Score	SIFTScore	PolyPhen2 S	Allele Freque
1	rs376643643	1	10020	A			Intergenic					
2	rs373328635	1	10056	A	-		Intergenic					
3	rs62651026	1	10108	С	т		Intergenic					
4	rs376007522	1	10109	Α	т		Intergenic					
5	rs368469931	1	10139	А	т		Intergenic					
6	rs144773400	1	10145	Α	-		Intergenic					
7	rs375931351	1	10147	С			Intergenic					
8	rs371194064	1	10150	С	т		Intergenic					
9	rs367896724	1	10177	А	-		Intergenic					0.4253
10	rs201752861: r	1	10177	A	С		Intergenic					0.4253
11	rs201694901	1	10180	т	с		Intergenic					
12	rs143255646; r	1	10229	A	-		Intergenic					
13	rs200462216	1	10229	A	AACC		Intergenic					
14	rs376846324	1	10231	С			Intergenic					
15	rs200279319	1	10231	С	A		Intergenic					
16	rs145599635	1	10234	С	Т		Intergenic					
17	rs540431307	1	10235	т	-		Intergenic					0.0012
18	rs540431307	1	10235	т	A		Intergenic					0.0012
19	rs148908337	1	10248	Α	Т		Intergenic					
20		1	10250		-		Intergenic					
	rs375044980	1	10250		AC		Intergenic					
22	rs199706086	1	10250	Α	С		Intergenic					
23	rs140194106	1	10255	A	-		Intergenic					

Single Nucleotide Polymorphism

dbSNP

Short Genetic Variations

3.4 Biological – Disease Associations

Our first stop will be Biological Associations where we will select Disease Association and type in Hodgkin's Lymphoma (we could also have picked Cell Process Association for things like "apoptosis" or Drug Association for small molecule drugs, all of which are annotated in the main Pathway Studio database).

The search will return a number of related diseases (you could select more than one). For this example, just select "Hodgkin Disease"

iological Associations	×	Click on Apply Filters:
▼ Disease Association	n \forall Drug Association	
Search	Added Filtes	💽 🛃 Start 🛛 🛗 Variation Data 🗡
Hodgkin Lymphoma	P Hodgkin Disease remove	
Hodgkin Lymphoma, Adult		
classical Hodgkin lymphoma		✓ Location
composite lymphoma		
Diffuse Lymphocyte-Predominant Hodgkin's Lymp		
Hodgkin Disease		
Lymphocyte Depletion Hodgkin's Lymphoma		and the set the distribution of the set of t
Lymphocyte-Rich Classical Hodgkin's Lymphoma		ps.disease IN ('Hodgkin Disease')
Lymphoma, B-Cell		
Lymphoma, Follicular		
Lymphoma, Non-Hodgkin	r	Click on Apply Filters
Add All	Remove All	
Reset All	Apply Filters Cancel	This search will be tracked in

This search will be tracked in the Added Filters bar just below

the Filter tabs. This is very helpful to follow as you add more filters. (note: This bar

is not interactive, i.e. you cannot add or delete anything by typing. The only way to go back is to clear everything, but don't worry - the filters are easy to use).

Now we're down to about 2 million SNPs (check it and see!).

What we've done is selecting all those SNPs that are mapped to the subset of genes associated with Hodgkin's Lymphoma in the Pathway Studio database (from the scientific literature).

But that's still way too much, so let's keep filtering!

3.5 Functional Impact Filter

Translational Impact:	Missense	Splice disrupt	CDS indel
	Nonsense	Misstart	Non stop
SIFT Prediction:	Tolerated(>0.05)	✓ Damaging(<=0.05)	
PolyPhen2 Prediction:	Benign(<=0.452)	Possibly Damaging	Probably Damaging(>=0.957)
	Least conserved		Most conserved
GERP++ Conservation:	-12.3		6.17
Reset			Ok Cancel

Next select the **type of SNP** with respect to the functional impact on the protein.

From the tool bar select the Functional Impact filter. In this example, missense, splice disrupt, nonsense, misstart and non-stop mutation types are selected for Translational Impact. Also, for SIFT, select "damaging" and for PolyPhen2 select "probably damaging."

• SIFT predicts whether an amino acid substitution affects protein function based on sequence homology and the physical properties of amino acids.

• PolyPhen2 predicts possible impact of amino acid substitutions on the structure and function of human proteins using straightforward physical and evolutionary sequence comparative considerations.

Now, we're down to a little over 500,000 SNPs to examine. That's still a lot! We have to keep going!

Let's reduce this number further by examining only those SNPs that are not commonly found within the 1000 Genome Project data (SNPs associated with disease are expected to be **uncommon** in the general population).

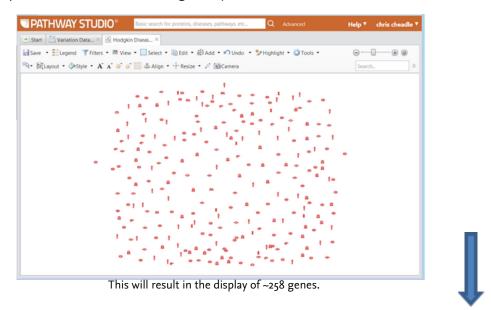
In this example only SNPs that are present in less than 5% of the genomes in the 1000 Genome Project will be considered.

Frequency	X
Is Novel (not in dbSNP)	
Minor Allele frequency: < 💌 0.05	in 1000 Genomes Project
Reset	Ok Cancel

Now we're down to a manageable number of SNPs (2738).

2 rs201667735 1 9305579 G A H6PD CDS missense 5.31 0.004 1 0.00 3 rs143104068 1 9307032 C T H6PD CDS missense 5.03 0.047 0.999 0.00 4 rs200586103 1 9307030 G A H6PD CDS missense 5.03 0 1 0.00 5 rs35525021 1 9307088 C T H6PD CDS missense 5.03 0 1 0.00 6 rs40537862 1 9307088 C T H6PD CDS missense 5.03 0 1 0.00 7 rs148558413 1 9322124 G T H6PD CDS missense 5.25 0 1 0.00 8 rs20049650 1 932237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 9322333	Cle		😰 Export		se toentmers	ons 🖓 Databas	Biological Associat	requency Y	t Y Fr	ctional Impac	ion ¥	on Tr Gene Ko	ocatio
1 ns201877167 1 9305439 A G H6PD CDS missense 5.31 0 1 0.000 2 rs201667735 1 9305579 G A H6PD CDS missense 5.31 0.004 1 0.000 3 rs143104068 1 9307032 C T H6PD CDS missense 5.03 0.047 0.999 0.00 4 rs200586103 1 9307040 C G H6PD CDS missense 5.03 0 1 0.00 5 rs35525021 1 9307088 C T H6PD CDS missense 5.03 0 1 0.00 6 rs40537862 1 9307088 C T H6PD CDS missense 5.25 0 1 0.00 7 rs148558413 1 932214 G A H6PD CDS missense 5.25 0 1 0.00 9 rs5733487 1 9322143 G <th></th> <th>05</th> <th>7 AND afreq<0.0</th> <th>oolyph2s>=0.95</th> <th>sifts<=0.05 AND p</th> <th>rt','nonstop') AND</th> <th>upt','nonsense','missta</th> <th>e','splice-disru</th> <th>missense</th> <th>tranImp IN (</th> <th>sease') A</th> <th>e IN ('Hodgkin</th> <th>liseas</th>		05	7 AND afreq<0.0	oolyph2s>=0.95	sifts<=0.05 AND p	rt','nonstop') AND	upt','nonsense','missta	e','splice-disru	missense	tranImp IN (sease') A	e IN ('Hodgkin	liseas
2 rs201667735 1 9305579 G A H6PD CDS missense 5.31 0.004 1 0.00 3 rs143104068 1 9307032 C T H6PD CDS missense 5.03 0.047 0.999 0.00 4 rs200586103 1 9307040 C G H6PD CDS missense 4.1 0.005 0.993 0.00 5 rs35525021 1 9307088 C T H6PD CDS missense 5.03 0 1 0.00 6 rs540537862 1 9307088 C T H6PD CDS missense 5.03 0 1 0.00 7 rs148558413 1 9322144 G A H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs57533487 1 9322333 <th>Diseases</th> <th>Allele Frequ</th> <th>PolyPhen2</th> <th>SIFTScore</th> <th>GERP++ Sc</th> <th>Transl. Impact</th> <th>Gene region</th> <th>Gene</th> <th>Alt.</th> <th>tion ref</th> <th>C</th> <th>rsId</th> <th>•</th>	Diseases	Allele Frequ	PolyPhen2	SIFTScore	GERP++ Sc	Transl. Impact	Gene region	Gene	Alt.	tion ref	C	rsId	•
3 rs143104068 1 9307032 C T H6PD CDS missense 5.03 0.047 0.999 0.00 4 rs200586103 1 9307040 C G H6PD CDS missense 4.1 0.005 0.993 0.00 5 rs35525021 1 9307050 G A H6PD CDS missense 5.03 0 1 0.00 6 rs540537862 1 9307088 C T H6PD CDS missense 4.09 0.002 1 0.00 7 rs148558413 1 9322120 C T H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 932233 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 93223	2 Hodgkin Dis	0.0002	1	0	5.31	missense	CDS	H6PD	G	05439 A	1	rs201877167	1
4 rs200586103 1 9307040 C G H6PD CDS missense 4.1 0.005 0.993 0.00 5 rs35525021 1 9307050 G A H6PD CDS missense 5.03 0 1 0.00 6 rs540537862 1 9307058 C T H6PD CDS missense 4.09 0.002 1 0.00 7 rs148558413 1 9322120 C T H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322137 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs57537887 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 11 rs37550456 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322333 </td <td>2 Hodgkin Dis</td> <td>0.0002</td> <td>1</td> <td>0.004</td> <td>5.31</td> <td>missense</td> <td>CDS</td> <td>H6PD</td> <td>Α</td> <td>05579 G</td> <td>1</td> <td>rs201667735</td> <td>2</td>	2 Hodgkin Dis	0.0002	1	0.004	5.31	missense	CDS	H6PD	Α	05579 G	1	rs201667735	2
5 rs35525021 1 9307050 G A H6PD CDS missense 5.03 0 1 0.00 6 rs540537862 1 9307088 C T H6PD CDS missense 4.09 0.002 1 0.00 7 rs148558413 1 9322120 C T H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322137 G A H6PD CDS missense 5.25 0 1 0.00 9 rs557334874 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 13 rs570041130 1 9322373	8 Hodgkin Dis	0.0028	0.999	0.047	5.03	missense	CDS	H6PD	т	07032 C	1	rs143104068	3
6 rs540537862 1 9307088 C T H6PD CDS missense 4.09 0.002 1 0.00 7 rs148558413 1 9322120 C T H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322144 G A H6PD CDS missense 5.25 0 1 0.00 9 rs557334874 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 9322233 C T H6PD CDS missense 3.32 0.005 0.997 0.00 11 rs375504656 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322334 G A H6PD CDS missense 5.24 0.002 1 0.00 13 rs570041130 1 9322	2 Hodgkin Dis	0.0002	0.993	0.005	4.1	missense	CDS	H6PD	G	07040 C	1	rs200586103	4
7 rs148558413 1 9322120 C T H6PD CDS missense 5.25 0 1 0.00 8 rs200049650 1 9322144 G A H6PD CDS missense 5.25 0 1 0.00 9 rs557334874 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 9322233 C T H6PD CDS missense 3.32 0.005 0.997 0.00 11 rs375504656 1 932233 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 932233 G A H6PD CDS missense 5.24 0.002 1 0.00 13 rs570041130 1 9322373 C T H6PD CDS missense 5.24 0.002 1 0.00 14 rs138833705 1 93223	3 Hodgkin Dis	0.003	1	0	5.03	missense	CDS	H6PD	Α	07050 G	1	rs35525021	5
8 rs200049650 1 9322144 G A H6PD CDS missense 5.25 0 1 0.00 9 rs557334874 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575397887 1 9322233 C T H6PD CDS missense 3.32 0.005 0.997 0.00 11 rs375504656 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322334 G A H6PD CDS missense 5.24 0.002 1 0.00 13 rs57041130 1 9322373 C T H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs18833705 1 9322376 T H6PD CDS missense 5.24 <td>2 Hodgkin Dis</td> <td>0.0002</td> <td>1</td> <td>0.002</td> <td>4.09</td> <td>missense</td> <td>CDS</td> <td>H6PD</td> <td>Т</td> <td>07088 C</td> <td>1</td> <td>rs540537862</td> <td>6</td>	2 Hodgkin Dis	0.0002	1	0.002	4.09	missense	CDS	H6PD	Т	07088 C	1	rs540537862	6
9 rs557334874 1 9322237 G A H6PD CDS missense 3.23 0.043 0.975 0.00 10 rs575597887 1 9322233 C T H6PD CDS missense 3.32 0.005 0.997 0.00 11 rs375504656 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322334 G A H6PD CDS missense 4.12 0.014 0.995 0.00 13 rs570041130 1 9322373 C T H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs138833705 1 9322376 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS miss	4 Hodgkin Di	0.0004	1	0	5.25	missense	CDS	H6PD	т	22120 C	1	rs148558413	7
10 rs575597887 1 9322243 C T H6PD CDS missense 3.32 0.005 0.997 0.00 11 rs375504656 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.000 12 rs140867232 1 9322334 G A H6PD CDS missense 4.12 0.014 0.995 0.00 13 rs570041130 1 9322373 C T H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs138833705 1 9322376 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322376 C T H6PD CDS missen	2 Hodgkin Dis	0.0002	1	0	5.25	missense	CDS	H6PD	А	22144 G	1	rs200049650	8
11 rs375504656 1 9322333 C T H6PD CDS missense 5.24 0.002 1 0.00 12 rs140867232 1 9322334 G A H6PD CDS missense 4.12 0.014 0.995 0.00 13 rs570041130 1 9322366 A G H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs138833705 1 9322376 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0 1 0.00 17 rs182877860 1	2 Hodgkin Dis	0.0002	0.975	0.043	3.23	missense	CDS	H6PD	Α	22237 G	1	rs557334874	9
12 rs140867232 1 9322334 G A H6PD CDS missense 4.12 0.014 0.995 0.00 13 rs570041130 1 9322366 A G H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs138833705 1 9322373 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0 1 0.00 17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1	4 Hodgkin Di	0.0004	0.997	0.005	3.32	missense	CDS	H6PD	т	22243 C	1	rs575597887	10
13 rs570041130 1 9322366 A G H6PD CDS missense 5.24 0.003 0.997 0.00 14 rs138833705 1 9322373 C T H6PD CDS missense 5.24 0.002 1 0.000 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0 1 0.00 17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1 9323759 G A H6PD CDS missense	6 Hodgkin Di	0.0006	1	0.002	5.24	missense	CDS	H6PD	т	22333 C	1	rs375504656	11
14 rs138833705 1 9322373 C T H6PD CDS missense 5.24 0.002 1 0.00 15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.002 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0.03 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0 1 0.00 17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1 9323730 G T H6PD CDS missense 5.57 0 1 0.00 19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9	8 Hodgkin Di	0.0008	0.995	0.014	4.12	missense	CDS	H6PD	Α	22334 G	1	rs140867232	12
15 rs140631516 1 9322376 C T H6PD CDS missense 5.24 0.003 1 0.00 16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0.03 1 0.00 17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1 9323730 G T H6PD CDS missense 5.57 0 1 0.00 19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.01 1 0.00 19 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.00	2 Hodgkin Dis	0.0002	0.997	0.003	5.24	missense	CDS	H6PD	G	22366 A	1	rs570041130	13
16 rs534716613 1 9322379 C T H6PD CDS missense 5.24 0 1 0.00 17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1 9323730 G T H6PD CDS missense 5.57 0 1 0.00 19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.021 0.997 0.00 19 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.00	4 Hodgkin Dis	0.0004	1	0.002	5.24	missense	CDS	H6PD	т	22373 C	1	rs138833705	14
17 rs182877860 1 9323661 G A H6PD CDS missense 5.56 0.005 0.996 0.00 18 rs147080717 1 9323730 G T H6PD CDS missense 5.57 0 1 0.00 19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.00	3 Hodgkin Dis	0.003	1	0.003	5.24	missense	CDS	H6PD	Т	22376 C	1	rs140631516	15
18 rs147080717 1 9323730 G T H6PD CDS missense 5.57 0 1 0.00 19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.00	2 Hodgkin Di	0.0002	1	0	5.24	missense	CDS	H6PD	т	22379 C	1	rs534716613	16
19 rs377461550 1 9323759 G A H6PD CDS missense 5.57 0.021 0.997 0.00 20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.000	2 Hodgkin Dis	0.0002	0.996	0.005	5.56	missense	CDS	H6PD	Α	23661 G	1	rs182877860	17
20 rs377461550 1 9323759 G T H6PD CDS missense 5.57 0.004 1 0.00	2 Hodgkin Dis	0.0002	1	0	5.57	missense	CDS	H6PD	т	23730 G	1	rs147080717	18
	2 Hodgkin Di	0.0002	0.997	0.021	5.57	missense	CDS	H6PD	А	23759 G	1	rs377461550	19
21 rs35863691 1 9324107 C T H6PD CDS missense 5.67 0.01 0.985 0.00	2 Hodgkin Di	0.0002	1	0.004	5.57	missense	CDS	H6PD	т	23759 G	1	rs377461550	20
	2 Hodgkin Dis	0.0002	0.985	0.01	5.67	missense	CDS	H6PD	т	24107 C	1	rs35863691	21
22 rs560717968 1 9324224 G A H6PD CDS missense 4.74 0.014 0.996 0.00	2 Hodgkin Dis	0.0002	0.996	0.014	4.74	missense	CDS	H6PD	Α	24224 G	1	rs560717968	22

3.6 Export Genes to Pathway Studio

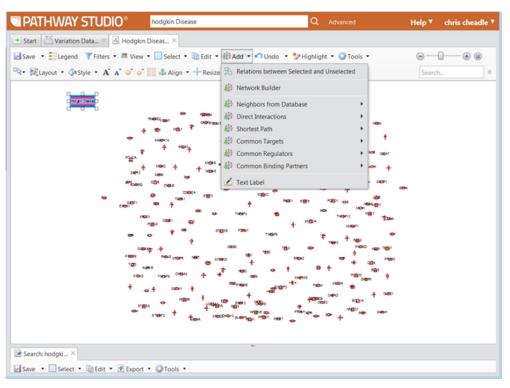

Note that the filter commands are reprised on the Added Filters bar and reflected as well in the table annotations below for the individual SNPs.

Our next step will be to export the genes* to which these SNPs are mapped into the Pathway Studio main program for further analysis.

*As many of the genes in the list have multiple SNPs, the number of genes to examine is far less than 2700.

To further examine these identified genes, go to: Copy Genes > Copy First 1000 Genes. This will copy the gene names to the clipboard.

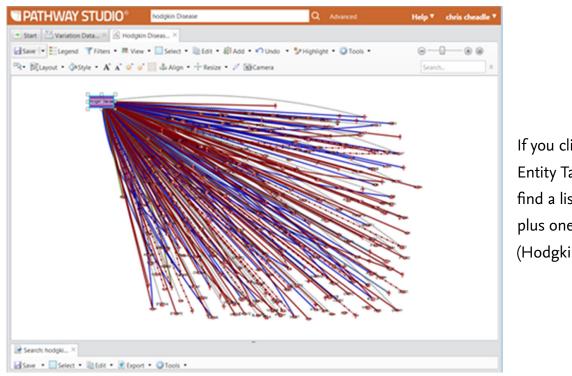
Go to Start tab, Create New Pathway and paste the gene list into the Pathway Viewer window (this will take a minute, so be patient, there are a lot of genes!).



Next, type in "Hodgkin Lymphoma" into the Search box at top of page

Hodgkin Lymphoma	Q	Advanced
------------------	---	----------

Select "Hodgkin Disease" and proceed to the "Add" Tab. Select, copy, and paste the return (from table below) into the Pathway

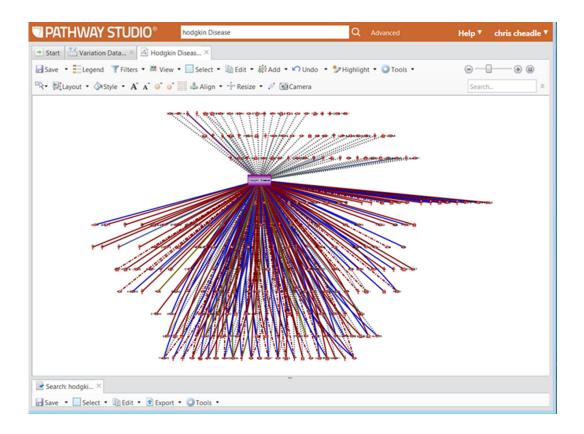

PATHWAY STUDIO®	hodgkin Disease	Q Advanced	Help 🔻 chris chea	dle
🔹 Start 🔛 Variation Data 🛛 🙆 Hod	gkin Diseas ×			
🚽 Save 🔹 🗮 Legend 🍸 Filters 🔹 🛤 Vi	iew 🔹 🥅 Select 🔹 🐚 Edit 🔹 👬 Add 🔹	🖍 Undo 🔹 🦅 Highlight 🔹 🥥 Tools 🔹		
🔍 • 😹 Layout • 🖉 Style • 🗛 🖌 🍑	🧿 🌲 Align 🔹 🕂 Resize 👻 🖉 🗐	Camera	Search_	
Search: hodgki ×				
🚽 Save 🔹 🥅 Select 🔹 🛍 Edit 🔹 💽 Exp	ort • 💭Tools •			
Name	Description	Object Type	Hit type	
🛛 🕈 Hodgkin Disease		Disease	Concept recognized	
Proteins Involved in Pathogenesis of H		Pathway	Pathway containing Hodgkin Disease	
Proteins involved in Pathogenesis of H		SemanticConcept	Concepts found by Name/Alias	
Hodgkin Disease Cell Lines		Semanticconcept		
tend .		Pathway	Concepts found by Name/Alias	
Hodgkin Disease Cell Lines			Concepts found by Name/Alias Concepts found by Name/Alias	
Hodgkin Disease Cell Lines	Hodgkin disease, susceptibility, pseudoaut	Pathway		
Hodgkin Disease Cell Lines Hodgkin Disease variant genes 03-17 THodgkin Lymphoma, Adult	Hodgkin disease, susceptibility, pseudoaut	Pathway Disease	Concepts found by Name/Alias	

Add "Relations between Selected and Unselected"

What we've done is to connect all the Hodgkin Disease variant genes to the Disease entity "Hodgkin Disease" in the Pathway Studio database using all the literature based relationships found in the database between these genes and that disease.

You should get something that looks like this:

If you click View -> Entity Table View, you will find a list of the genes (246) plus one disease (Hodgkin Disease)


There's a lot of useful information in this table!

	le hodgkin Dise					
🛨 Start 🛛 🛗 Variation Data 🗡 🚺	Hodgkin Diseas $ imes$					
Save • TFilters • 🛄 View •	Select 🔹 🗎 Edit 🔹	🖍 Undo 🔹 [Export 🔹		Search	
Relation	Object Type	Effect	Mechanism	# of References	Confidence Level	
- Hodgkin Disease+> MAP3K8	QuantitativeChange	positive		1	1	
- Hodgkin Disease> CD68	Biomarker			2	2	
- Hodgkin Disease CD247	QuantitativeChange	negative		1	1	
→ CXCL8> Hodgkin Disease	Regulation			1	1	
- Hodgkin Disease+> AURKA	QuantitativeChange	positive		1	1	
- Hodgkin Disease> CASP1	Biomarker			1	1	
- Hodgkin Disease> VDR	Biomarker			1	1	
- Hodgkin Disease> MGMT	GeneticChange			1	1	
- TNFSF4 Hodgkin Disease	CellExpression		surface	2	2	

If you click View -> Relation Table View, you will find a list of all the relations

(309). Note: There are more relations for this network than there are entities because a single entity can have multiple relations in the network.

Hint: to get this look, select Layout -> Hierarchical.

OK, if you got this far alright (right!), now, we can begin to systematically explore the biology of our selected genes using some of the many Pathway Studio enrichment analysis tools.

3.7 Associate Genes with Hodgkin's Disease

So you'll recall that we selected these genes in the variant analysis tool precisely because they are associated in some way with Hodgkin Disease (see above).

Let's test that right now;

Select all the genes in the Pathway Viewer (or Entity Viewer if you are in that window).

Click on Tools -> Enrichment Analysis of Selected Entities

The Input Objects are the genes you selected (scroll down in this box and you will find the total number of genes selected [Total: 246], this is a good way to double-check your selection).

The Analysis Type is Find Sub-Networks Enriched with Selected Entities

Skip down to Neighbors (we'll accept all the default parameters for this example) and click the radio button for Disease Biomarkers (Mutations).

3.8 Sub-Network Enrichment Analysis, Disease and Cell Process

Sub-Network Enrichment Analysis (SNEA) is a powerful form of causal reasoning for network analysis*. In this case, the "Gene Set Seed" type selected is Disease. The SNEA algorithm will rapidly evaluate the submitted gene list for enrichment of all disease types in the database found upstream of these genes and connected to them by the relation "GeneticChange."

Enrichment Analysis of Select	ed Entities	×
Input Objects:	CDKN2C, STXBP2, PNP, HLA-DRB1, TNFRSF11B, DICER1, IGF2BP3, POU2F2, RELA, AURKA, INS, TRAF1, NFATC1, CASP8, HPSE, IGH, S1PR1, TNF, BCL6, CCL5, CYP3A4, MEFV, CDKN2A,	
Analysis Type:	Find Sub-Networks Enriched with Selected Entities	
p-value ≤	0.05	
Min Overlap:	1	
	Include only overlapping entities in Pathways	
Max Networks:	100	
Neighbors:	Expression Targets	
	miRNA Targets	
	Chemical Expression Targets	
	Binding Partners	
	Protein Modification Targets	
	Disease Biomarkers (Quantity)	
	Disease Biomarkers (Mutations)	
	Proteins/Chemicals Regulating Diseases	
	Proteins/Chemicals Regulating Cell Processes	
	Custom Select types	
	Find Cano	el

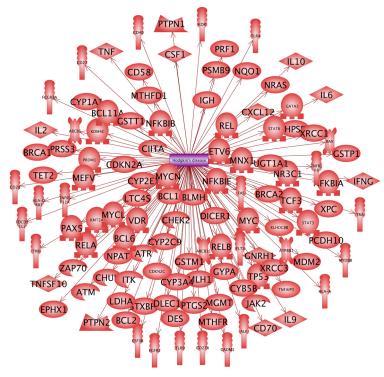
In a sense, it is asking the simple question: "Are any particular diseases over-represented in this particular list of genes?"

*Sivachenko AY, Yuryev A, Daraselia N, Mazo I (2007) Molecular networks in microarray analysis. Journal of bioinformatics and computational biology 5: 429–456.

And the answer is...? You got it! **Hodgkin's Disease**, followed by Lymphoma, Neoplasms Leukemia, and Infection. Clearly, mutations in these variant-selected genes are highly involved in multiple diseases for both cancer and inflammation.

				etc Q	Advanced	Help ▼	chris chead
🖢 Start 🛛 🙆 Hodgkin Diseas ×							
🖥 Save 🔹 📕 Legend 🏾 🍸 Filters 🔹 🛤 View 👻 🛄	Select 🔹 🛅 Edit 🔹	👬 Add 🝷 🖍 Un	do 🔹 🎾	Highlight 🝷 🥥	Tools 🔹		
🔍 - 😹 Layout - 🖓 Style - 🗛 A 🍯 💽 🚔	Alian 👻 🏥 Resize	🔹 🥖 💽 Camera				Search	h
	- ingit • incoles						
Sub-networks e × 🖻 Sub-networks e ×			-				
Save 🔹 🛄 Select 🔹 🐚 Edit 🔹 😰 Export 🔹 🥥	Tools 🔻		-				
		Gene Set Seed	Overlap	Percent Overlap	Overlapping Entities	p-value	Jaccard similarity
Save • Select • 🗈 Edit • 💽 Export • 🥥 elected Deselect All Name	Tools Total # of Neighbors		Overlap 102	Percent Overlap 87	Overlapping Entities CDKN2C_STXBP2_GYPA_DICER1_RE		Jaccard similarity 3.96887E-1
Save • Select • 🕅 Edit • 💽 Export • 🥥 elected Deselect All Name	Total # of Neighbors	Gene Set Seed Hodgkin Disease Lymphoma				4.84197E-192	The second s
Save • Select • B Edit • Export • C Export •	Total # of Neighbors	Hodgkin Disease	102	87	CDKN2C, STXBP2, GYPA, DICER1, RE	4.84197E-192 1.05928E-129	3.96887E-1
Save • Select • Deselect All Name Downstream Neighbors of Hodgkin Disease Downstream Neighbors of Lymphoma	Total # of Neighbors 115 599	Hodgkin Disease Lymphoma	102 125	87 20	CDKN2C, STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1, DICER1,	4.84197E-192 1.05928E-129 8.87514E-117	3.96887E-1 1.74095E-1
Save • Select • Call Edit • Export • elected Deselect All Name Downstream Neighbors of Hodgkin Disease Downstream Neighbors of Lymphoma Downstream Neighbors of Neoplasms	Total # of Neighbors 115 599 3094	Hodgkin Disease Lymphoma Neoplasms	102 125 194	87 20 6	CDKN2C, STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1, DICER1, CDKN2C, HLA-DRB1, TNFRSF11B, DI	4.84197E-192 1.05928E-129 8.87514E-117 8.99650E-113	3.96887E-1 1.74095E-1 6.17048E-2
Save • Select • Call Edit • Export • Call Edit • Export • Call Name Call Deselect All Deselect All Select • Call	Total # of Neighbors 115 599 3094 681	Hodgkin Disease Lymphoma Neoplasms Leukemia	102 125 194 119	87 20 6 17	CDKN2C, STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1, DICER1, CDKN2C, HLA-DRB1, TNFRSF11B, DI CDKN2C, CCR5, STAT1, HLA-DRB1,	4.84197E-192 1.05928E-129 8.87514E-117 8.99650E-113 1.98088E-107	3.96887E-1 1.74095E-1 6.17048E-2 1.47643E-1
Save Save Select Se	Total # of Neighbors 115 599 3094 681 1411	Hodgkin Disease Lymphoma Neoplasms Leukemia Infection	102 125 194 119 145	87 20 6 17 10	CDKN2C, STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1, DICER1, CDKN2C, HLA-DRB1, TNFRSF11B, DL CDKN2C, CCR5, STAT1, HLA-DRB1, CCR5, HLA-DRB1, STAT1, RNASE3, D	4.84197E-192 1.05928E-129 8.87514E-117 8.99650E-113 1.98088E-107 5.22707E-106	3.96887E-1 1.74095E-1 6.17048E-2 1.47643E-1 9.60265E-2
Save Save Select Se	Total # of Neighbors 115 599 3094 681 1411 2894	Hodgkin Disease Lymphoma Neoplasms Leukemia Infection Cancer	102 125 194 119 145 182	87 20 6 17 10 6	CDKN2C. STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1, DICER1, CDKN2C, HLA-DRB1, TNFRSF11B, DL CDKN2C, CCR5, STAT1, HLA-DRB1, CCR5, HLA-DRB1, STAT1, RNASE3, D CDKN2C, CCR5, HLA-DRB1, STAT1,	4.84197E-192 1.05928E-129 8.87514E-117 8.99650E-113 1.98088E-107 5.22707E-106 7.37157E-97	3.96887E-1 1.74095E-1 6.17048E-2 1.47643E-1 9.60265E-2 6.15697E-2
Save Select	Total # of Neighbors 115 599 3094 681 1411 2894 1202	Hodgkin Disease Lymphoma Neoplasms Leukemia Infection Cancer Inflammation	102 125 194 119 145 182 130	87 20 6 17 10 6 10	CDKN2C. STXBP2, GYPA, DICER1, RE CCR5, STXBP2, PNP, STAT1. DICER1, CDKN2C, HLA-DRB1, TNFRSF11B, DL CDKN2C, CCR5, STAT1. HLA-DRB1, CCR5, HLA-DRB1, STAT1, RNASE3, D CDKN2C, CCR5, HLA-DRB1, STAT1, CCR5, PNP, STAT1, HLA-DRB1, RNAS	4.84197E-192 1.05928E-129 8.87514E-117 8.99650E-113 1.98088E-107 5.22707E-106 7.37157E-97 8.63297E-94	3.96887E-1 1.74095E-1 6.17048E-2 1.47643E-1 9.60265E-2 6.15697E-2 9.87842E-2

There's a lot of useful information in this table!


So, there is a high degree of overlap (108/257, 42%) between our variant gene list and the genes annotated as mutated in Hodgkin Disease in the Pathway Studio database.

Once again, this isn't surprising because this group is a subset of the group of all Hodgkin Disease associated genes which we used originally to filter the variant database (pX).?

But it is reassuring – everything is working!

Let's now take a peek at these SNEA-identified genes by double-clicking on the Overlapping Entities box on the Downstream Neighbors of Hodgkin Disease row. This will open a new window for these genes in the Pathway Viewer.

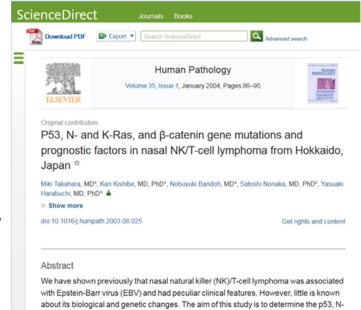
3.9 Drill Down!

If we go to View -> Relation Table View and sort by # of References (Descending) we can immediately see the most studied genetic changes associated with Hodgkin Disease.

TATHWAY STUDI	O® Basic search for proteins, diseases, pathways, etc Q Advanced Help ▼ chris cheadle ▼							
💌 Start 🖪 Hodgkin Diseas 🛛	New Pathway × Downstream Nei ×							
🖬 Save 🔹 🍸 Filters 🔹 🋄 View 🔹	Select • Dundo • Export • Search							
1 Selected Deselect All								
Relation	Object Type Effect Mechanism # of References Confidence Level Biomarke							
- Hodgkin Disease> TP53	GeneticChange 37 3							
4 4 Page 1 of 1 ▶ ▶	Items per page 350 Displaying 1 - 102 of 102							
Sub-networks e 🛛 💽 Sub-netw	vorks e × 😑 GeneticChange: × 😑 GeneticChange: × 🥹 TP53 ×							
GeneticChange Hodgkin Dise	ase> TP53							
Properties References (37)	P53, N- and K-Ras, and β-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido, Japan Takahara,M_Kishibe,K_SBandoh,N_Nonaka,S_Harabuchi,V_(2004)							
Other Properties	Relevant Sentences Document Identifiers & Links Other available information							
▷ Collections	"Similarly, Elenitoba-Johnson et al found that in both cases of Hodgkin's lymphoma with p53 mutations, LMP-1 was also expressed."							
Collections								
	Relevant Sentences Document Identifiers & Links Other available information							
	"The presence of p53 positivity in non-Hodgkin's and Hodgkin's lymphomas indicates that mutations of the p53 gene may play a part in the development of these tumours."							
[AIDS lymphomas. Middleton,G.W.;Lau,R.K.(1992) Int J STD AIDS							
	Relevant Sentences Document Identifiers & Links Other available information							
	"In 1/3 of Burkitt's lymphoma p53 mutations were found but none in the 43 non=Hodgkin's lymphomas suggesting that p53 mutations and c-myc activation act symergistically in the pathogenesis of these tumors."							
[4	1 Absence of hereditary p53 mutations in eight familial Hodgkin's disease pedigrees. Racevskis,J.Wiernik,P.H.;Kirshner,E.D.;Raghavan,V.:Paietta,E.(1995) Leukemia							

For any relation in the Relation Table View you can drill down and see the documents and even the sentences used to derive those biological facts.

 P53, N- and K-Ras, and β-catenin gene mutations and prognostic factors in nasal NK/T-cell lymphoma from Hokkaido, Japan


 Takahara,M;Kishibe,K;Bandoh,N;Nonaka,S;Harabuchi,Y.(2004)
 Human Pathology

- Relevant Sentences Document Identifiers & Links Other available information
- ISSN: 0046-8177 PII: S0046-8177(03)00517-3 DOI: 10.1016/j.humpath.2003.08.025

Link-out to PubMed and full text articles*

*depending on user subscription status



and K-ras, and β -catenin status in this lymphoma in relation to EBV status and clinical

Let's finish up with a quick analysis of the potential biology for all the variant selected genes.

Just like we did before,
click on Tools ->
Enrichment Analysis of
Selected Entities.

before (246).

The Analysis Type,

this time, is Find Pathways/Groups Enriched with Selected Entities.

Enrichment Analysis of Select	ed Entities	×
Input Objects:	CDKN2C, STXBP2, PNP, HLA-DRB1, TNFRSF11B, DICER1, IGF2BP3, POU2F2, RELA, AURKA, INS, TRAF1, NFATC1, CASP8, HPSE, IGH, S1PR1, TNF, BCL6, CCL5, CYP3A4, MEFV, CDKN2A,	
Analysis Type:	Find Pathways/Groups Enriched with Selected Entities	
Show:	 All 25 best results 	
Gene Set Categories:	 Expand the content of functional classes and complexes in target gene set Cen signaling Inflammation Pathways Signal Transduction Pathways Disease Collections Cell Process Pathways Private pathways Sets Disease Collections Immunological Pathways 	S
	Find Cancel	

Under **Gene Set Categories**, check" Cell Process Pathways" (make sure nothing else is selected!) and then click Find...

Name	# of Entities	Expanded # of Entiti	Overlap	Percent Overlap	Overlapping Entities	p-value
Adipokines Production by Adipocyte	58	99	18	18	RELA, MAP3K14, N	1.77383E-14
🔲 🛃 Apoptosis	94	171	22	12	RELA, MAP3K14, N	2.67863E-14
Cell Cycle	140	304	20	6	RB1, CDKN2A, AUR	9.36480E-8
🔲 🛃 G2/M DNA Damage Checkpoint	22	30	5	16	CHEK2, ATR, ATM, T	1.29757E-4
🔲 🛃 G0/G1 Cell Cycle Phase Transition	52	101	8	7	RELA, RB1, STAT1,	2.82067E-4
🔲 🛃 G1/S DNA Damage Checkpoint	27	81	7	8	CHEK2, MDM2, AT	4.05942E-4

We can see that 5 out of the 6-top enriched cellular processes for the Hodgkin Disease DNA variants involve mutations in genes controlling apoptosis and the cell cycle, key regulatory events in cancer initiation and progression. ...and we're....

But wait, before we go let's do a quick review of what we learned today.

We learned how to access the Pathway Studio variant database.

We learned how to perform a Sub-Network Enrichment Analysis (SNEA) to find diseases enriched in a list of genes by mutation relations.

We learned how to drill down to the actual article references underlying relations.

All in all, not a bad day's work!

And **now** we're done, see you next time!

Study Questions 3

1.	Identify SNPs that are related to the disease SCA3, and tell the total number of SNPs.
2.	Apply "Functional Impact" filter mentioned in the text of Module 3. How many SNPs are left?
3.	Apply "Frequency" mentioned in the text of Module 3. How many SNPs are left?
4.	Use "Copy Genes" feature with the remaining SNPs in question 3. How many genes do you have?
5.	Use SNEA to identify top five diseases sorted by p-value related to the genes in Question 4.

For Physical Interaction with Proteins, How Do I ...

Exercise 3.1: Find proteins that bind to a protein?

Identifies protein binding partners (no additional regulatory event known). Binding relations have no Direction (Direct Regulation is regulation through a direct physical interaction and can also be considered here.)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Physical Interactions

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish filter: Binding

Exercise 3.2: Find small molecules that bind to a protein?

Finds small molecules that regulate the activity of a protein through a direct physical interaction (Drugs/non-naturally occurring small molecules included in ChemEffect data)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Small Molecule" Relations: Select "Direct Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 3.3: Find proteins that regulate a protein through a direct physical interaction?

Finds proteins that regulate the activity of a target protein through a direct physical interaction. Can also consider "Protmodification" relations.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "Direct Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 3.4: Find small molecules that regulate a protein through direct physical interactions?

Finds small molecules that regulate the activity of a protein through a direct physical interaction (Drugs/ non-naturally occurring g small molecules included in ChemEffect data)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

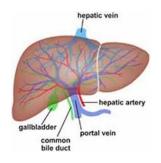
Step 4: Select Direction: Upstream

Step 5: Entities: Select "Small Molecule" Relations: Select "Direct Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

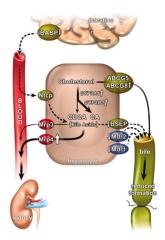
70

Module 4


Toxicology Workflow

Contents

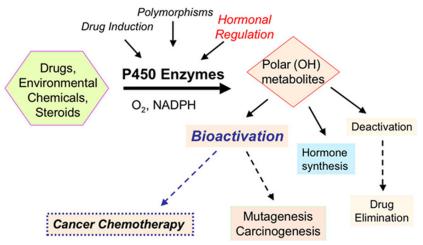
4.1	Introduction	50
4.2	The Cytochrome P450 Gene	50
4.3	Map Small Molecules Inducing Cholestatic	51
4.4	Filter Small Molecules for Drugs Only	52
4.5	Find All Proteins Inhibited by Cholestasis Related Drugs	57
4.6	Using the Interactive Network Filter	59
4.7	Identify Proteins Most Frequently Targeted by Cholestasis-Inducing Drugs	63
		2


Study Questions 4

How Do I Protein Modification(s):	71
Exercise 4.1: Find proteins(s) that acetylate/deacetylate a protein?	71
Exercise 4.2: Find protein(s) that cleave a protein?	71
Exercise 4.3: Find proteins(s) that methylate/demethylate a protein?	72
Exercise 4.4: Find protein(s) that phosphorylate/dephosphorylate a protein?	72
Exercise 4.5: Find protein(s) that ubiquitinate a protein?	.72

4.1 Introduction Cholestasis is a condition where bile cannot flow from the liver to the duodenum. There are two basic of cholestasis.
One is an obstructive type of cholestasis, where there is a mechanical blockage in the duct system that can occur from a gallstone or malignancy. The other, which includes

metabolic types of cholestasis, involves disturbances in bile formation that can occur because of genetic defects or acquired as a side effect of many medications.



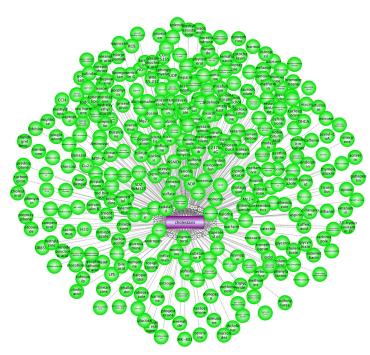
4.2 Cytochrome P450 Genes

Enzymes produced from cytochrome P450 genes are involved in the formation (synthesis) and breakdown (metabolism) of various molecules and chemicals within cells. Cytochrome P450 enzymes play a role in the synthesis of many molecules including steroid hormones, certain fats (cholesterol and other fatty acids), and acids used to digest fats (bile acids). Additional cytochrome P450 enzymes metabolize external substances, such as medications that are ingested, and internal substances, such as toxins that are formed within cells. There are approximately 60 CYP genes in humans.

Common variations (polymorphisms) in cytochrome P450 genes can affect the function of the enzymes. The effects of polymorphisms are most prominently seen in the breakdown of medications. Depending

Cytochrome P450 Enzymes and their Regulation

on the gene and the polymorphism, drugs can be metabolized quickly or slowly. If a cytochrome P450 enzyme metabolizes a drug slowly, the drug stays active longer and less is needed to get the desired effect. A drug that is quickly metabolized is broken down sooner, and a higher dose might be needed to be effective. Cytochrome P450 enzymes account for 70 percent to 80 percent of enzymes involved in drug metabolism.


Common variations (polymorphisms) in cytochrome P450 genes can affect the function of the enzymes. **The effects of polymorphisms are most prominently seen in the breakdown of medications.** Depending on the gene and the polymorphism, drugs can be metabolized quickly or slowly. If a cytochrome P450 enzyme metabolizes a drug slowly, the drug stays active longer and less is needed to get the desired effect. A drug that is quickly metabolized is broken down sooner and a higher dose might be needed to be effective. **Cytochrome P450 enzymes account for 70 percent to 80 percent of enzymes involved in drug metabolism.**

Each cytochrome P450 gene is named with CYP, indicating that it is part of the cytochrome P450 gene family. The gene is also given a number associated with a specific group within the gene family, a letter representing the gene's subfamily, and a number assigned to the specific gene within the subfamily. For example, the cytochrome P450 gene that is in group 27, subfamily A, gene 1 is written as CYP27A1.

Diseases caused by mutations in cytochrome P450 genes typically involve the buildup of substances in the body that are harmful in large amounts or that prevent other necessary molecules from being produced. OK, enough chalk talk. You want to get to some hands-on learning!

4.3 Map Small Molecules Inducing Cholestatic Effects

First, let's map all small molecules reported to induce cholestatic effects: Add neighbors to cholestasis

- Upstream;
- Small Molecules;
- Regulation;
- Effect = positive

Save pathway (Hint: Give it a name that will remind you what is, such as "Cholestasis - all small molecules."). Entity # = 352

4.4 Filter Small Molecules for Drugs Only

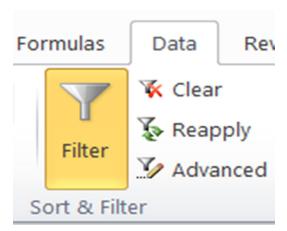
Next, you need to filter out just drugs from all small molecules, and this will require a quick excursion outside of Pathway Studio into Excel and back again.

First, go to the Entity Table View and, if it's not here already, add Reaxys ID to the columns

(Note: You can always add or remove columns from either the Entity Table View or the Relation Table View by clicking on any column header and choosing Customize Table from the dropdown menu.)

PATHWAY STUD	Basic search for		
🔹 Start 🖪 Cholestasis ×			
🔚 Save 🔹 🍸 Filters 💌 🚺 View	• Select •	🖹 Edit 🝷 👬 Add 🝷 🖍 U	ndo 🝷 👔 Exp
324 Selected Deselect All			
Name	Object Type	 Reaxys ID 	
V 💭 benzodiazepines	Small Molecule	Original Order	
🗹 💭 phenylbutazone	Small Molecule		
V 🎜 dicloxacillin	Small Molecule	Z↓ Sort Descending	711, 633719, 63
X xenobiotics	Small Molecule		
🗹 💭 URB597	Small Molecule	Customize Table	
Sucrose	Small Molecule	11343410, 1292717, 129	2718, 1292719, 1

Select and add Reaxys ID (Note:


Column options will change depending on the entities and relations in the table.)

Select All	Deselect All	Delau	It Settings		
Available Columns	5			Selected Colur	nns
# of Entities		-		Name	
Alias				Object Type	
CAS ID			Add >	Reaxys ID	
Cell Localization			< Remove		
CellType					
ChEBI ID			Up	n l	
Child Concepts					
Class			Down	U	
Connectivity		-			
•	+				

Export entity data (will automatically open in Excel).

Export Format	
Excel CSV/tab-delimited 💌	
Rows	
Selected Rows	All Rows (up to 1,000)
Columns	
Visible Columns	Customize Exported Columns
─ ∨ Advanced options ────	

Select Reaxys ID column, and under Data tab -> select Filter.

Scroll down and uncheck "Blanks."

	А		В		С		
1	Name	 ObjectType 		-	Reaxys ID	-	
2	captopril	Small Molecule	AZ	Ļ	Sort A to Z		
3	SDZ IMM125	Small Molecule	Z	Ļ	S <u>o</u> rt Z to A		
4	clavulanic acid	Small Molecule			Sort by Color		
5	MTP-PE	Small Molecule					
6	trinitrobenzene sulfonic acid	Small Molecule		K	<u>C</u> lear Filter From "Reaxys ID"		
7	muscimol	Small Molecule			Filter by Color	•	
8	oseltamivir	Small Molecule			Text <u>F</u> ilters	•	
9	CCl4	Small Molecule			Search	2	
10	propylthiouracil	Small Molecule			907616;775347		
11	haloperidol	Small Molecule			- 9107680;5236098		
12	triterpene	Small Molecule			- 94457;6821588;1170298;6118066;611		
13	tert-butyl hydroperoxide	Small Molecule			945894;856175;5722128;5722129;584 9464961;9034334;25335818	ć.	
14	Aminosyn	Small Molecule			- 9529441;4913623;4913621;9530382;4	_	
15	carbidopa-levodopa	Small Molecule			968010;5783046;67722;5783047;3645		
16	atorvastatin	Small Molecule			(Blanks)	-	
17	UDP	Small Molecule			Y III		
18	indomethacin	Small Molecule			OK Cancel		
19	erythromycin ethylsuccinate	Small Molecule					

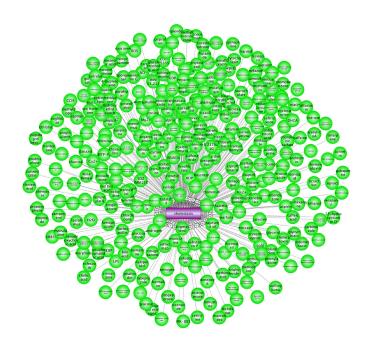
F Norr	I Custom Vi	iews Sho	•	mulas Data R Data om 100% Zoom Zoom	Arrange A		A‡ Save Workspace	Switch Windows +	Macros Macros
	E22 -	- fx	9648	298					
1	A	В		С	D	E	F	G	H
1	Name	ObjectType		Alias	Description	Reaxys 🖵			
3	propylthiouracil	Small Moleo	ule	propylthyracil;	6-propyl-2-thio	5407098;5	5507398;130	039;7433	34
4	chlordecone	Small Moleo	ule	decachlorooct	ahydro-1,3,4-m	c 1894593;2	2512091;317	0596;562	5832
5	memantine	Small Moleo	ule	Memantine hy	drochloride;,3-D	8735515;2	22309650;70	13527;79	71468;2
7	imidazole	Small Moleo	ule	imidazole citra	te;116421-26-2	8134454;9	906919;1537	8004;506	850;221
8	propafenone	Small Moleo	ule	Propafenon hy	drochlorid;Fend	2175182;5	5303267;434	3069;532	4636;53
9	peroxyl radicals	Small Moleo	ule	Peroxyl radical	;hydroperoxy ra	7801860;1	6255423		
309	stanozolol	Small Molec	ule	3'-hydroxystan	ozolol;17-Meth	5482020;3	0143;75538	4;678450;	755385
311	lomustine	Small Molec	ule	Lomustina;lucc	ostin;Lomustine;	2125058			
312	verapamil	Small Molec	ule	Verapamil Atid	;(-)-3-(3,4-Dime	t 3657914;8	169776;523	2311;5314	473;28
313	tamoxifen	Small Molec	ule	Tamoxifen citra	ate;1-p-beta-dir	2062019;7	052078;104	08923;572	23042;8
315	caffeic acid	Small Molec	ule	Caffeic acid de	hydrogenation I	2210884;2	210883;195	4563	
316	nor-binaltorphimine	Small Molec	ule	17,17'-bis(cyclo	opropylmethyl)-	6563991;6	265170;434	6416;2472	27298
317	methamphetamine	Small Molec	ule	Metamfetamin	a;Metamfetam	i 5248384;6	489321;308	1879;1072	499;41
318	rosiglitazone	Small Molec	ule	5-004-02-(((m	ethyl-2-pyridiny	14495663:	7966066:14	495662:15	5440038

Import Entity List

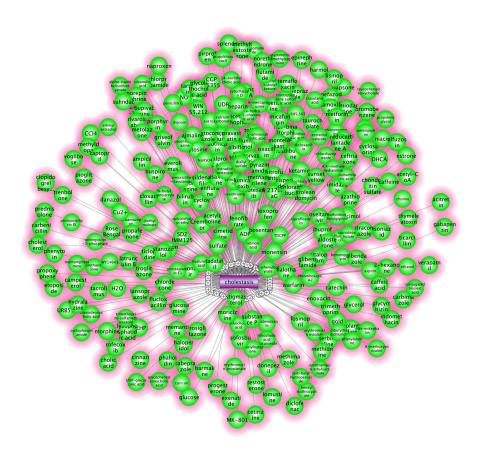
ID Count: 250

This will filter data for only those small molecules that have a Reaxys ID entry and thus will enrich those small molecules that are also recognized as drugs.

Copy (from Column A) all filtered drug names.

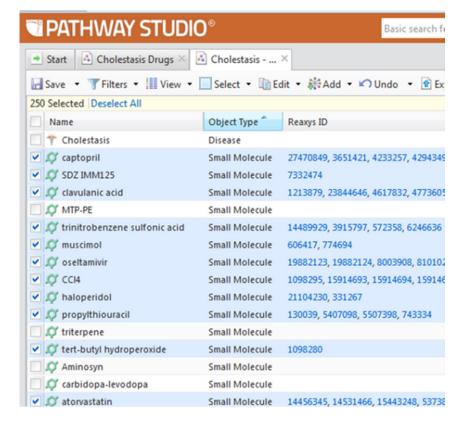

Now, you're going to go back into Pathway Studio and import these entities in as a group or pathway (Note: For this purpose, it doesn't matter which type.)

Now, you will quickly reimport the filtered from Excel b Studio by co Import Entit


	Input IDs:	captopril	<u>^</u>
the filtered list of Entity Names		SDZ IMM125 clavulanic acid	-
from Excel back into Pathway	Items Type: Type of Identifiers:	Small Molecule Name	
•			
Studio by copy/paste using the			
Import Entity function:			
	Import Entity List	•	×
	Copy and Paste List:		
	 glucosamine chlorambucil 		*
	Or Load File:		
			Browse
	IDs delimiter Row	-	
Item type = Small Molecule"			1
	Import Entity List		×
	Mapping Results		
	Mapped Entity Cour	nt: 250	
	Unmapped Entity Coun		
	Unmapped ID	5:	
	Save Imported Entities		
Give it a name!	10000000000 • 00000 • 00000000000000000	n: 🔲 Save as Group	
		Save as Pathway	
	Group/Pathway Nam Description	e: Cholestasis Drugs	
	Folder to sav		
		My Projects	
			« Back Finish

Next, select all of the imported entities, copy, and return to the original "Cholestasis – all small molecules" pathway. Open in Graph View.

Select "clipboard content," and highlight in red.

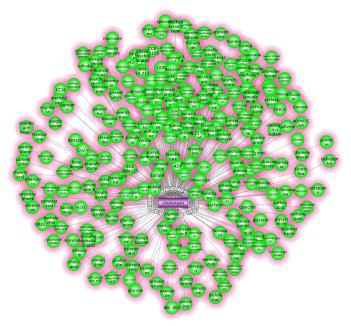

Now, remove all the non-drug small molecules.

Keeping the current selection, shift click on the cholestasis disease icon (Note: This will preserve all the remaining relations after the removal of unwanted entities in the next step.)

Select the Entity Table View (you'll notice some entries are highlighted, while others are not).

You'll also notice (if you're being particularly observant!) that all the highlighted entries have a Reaxys entry while the non-highlighted entries do not. Those are the ones we want to remove, but how?

...Get ready for it!



You're going to use something called "invert selection" found under the Select tab (just do it and see what happens!).

Did you see what just happened? Now, all the non-Reaxys entries are highlighted and all you have to do is...hit the Remove command (under the Edit tab) and voila - all gone!

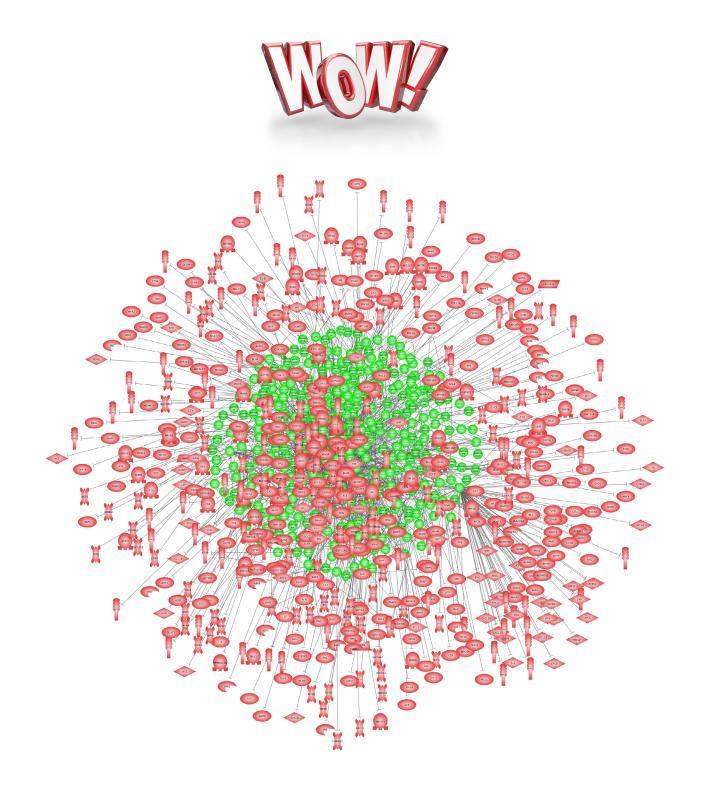
View your results in the Graph View mode. See, now the only small molecules are the highlighted drugs.

Don't forget to save your work!

Entity # = 272 +1 (drugs + disease)

OK, time to get pumped up!

Are you ready for some serious networking? Are you ready?

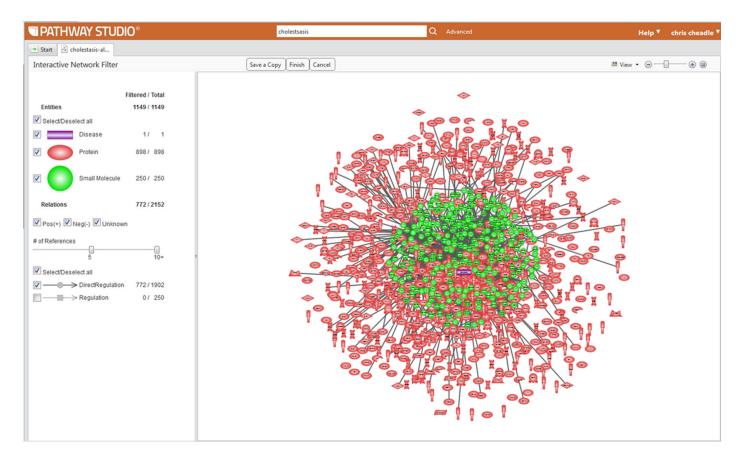


4.5 Find All Proteins Inhibited by Cholestasis-Related Drugs

You're now going to find all the proteins that are inhibited by these cholestasis related drugs.

Add neighbors to cholestasis related drugs:

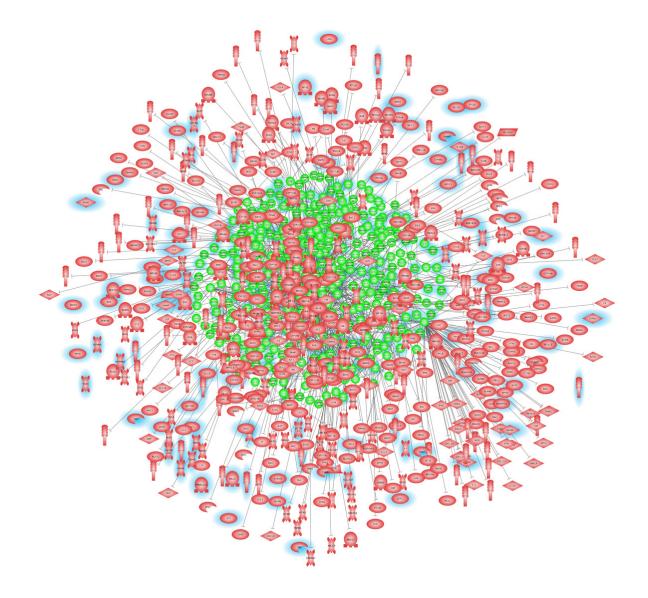
- 1. Select -> All
- 2. Add -> Network Builder
- 3. Expand pathway -> Advanced Expand Pathway Tool -> Next
- 4. Direction = Downstream -> Next
- 5. Select Protein as Entity, Direct Regulation as Relation, "Effect" = 'Negative' -> Next
- 6. Build Network from Entities In.... Entire Database -> Next -> Finish
- 7. View -> Graph View


Entity # = 1029, Relation # = 2310

That's a lot of proteins! But then again, you started with a lot of drugs! Filter this down a little bit and GET IT UNDER CONTROL!

4.6 Using the Interactive Network Filter

Select "Basic" under the "Filters" tab. This will open up the "Interactive Network Filter." This is an extremely useful feature in Pathway Studio 11.2. You can filter by entities and relations, effect (positive, negative, or none), and reference number.

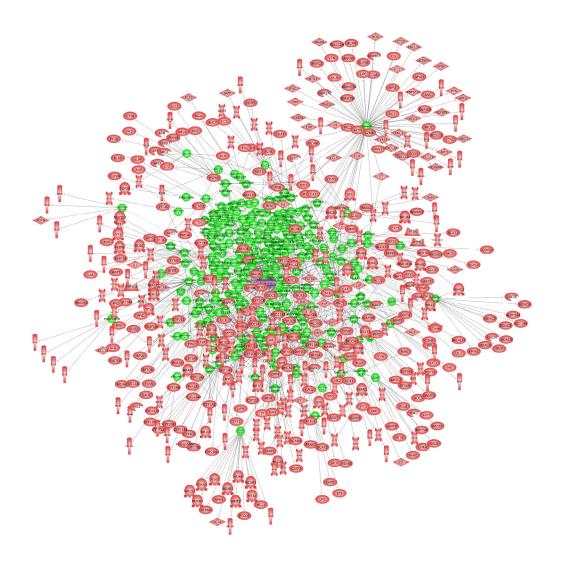

All your choices are reversible until you press "Finish." This allows you to rapidly inspect the network size and complexity based on your filtering choices.

Caution: Once you click on "Finish," you can't go back! So save your work before you filter. It will save you time and trouble if you need to backtrack!

Set the # of References = 7 (on the slider bar). This means each relation will have seven or more separate articles in support of the basic observation, and this will ensure that only the most well-studied drug/protein interactions will be considered for further analysis. This is fine for your purposes here.

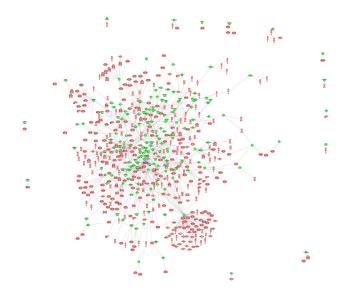
Wait a second, it doesn't look like anything's changed! But, if you look a little closer, you see that there are now entities in the network that are unconnected, i.e. they no longer have relations between certain proteins and any of the drugs. Why is that? (Hint: Something to do with reference #.)

And that brings us to



Voila ! --> a greatly reduced network.

Watch this! Go to the "Select" tab and select "Unconnected Entities" then go to edit and click remove.


AND....

Remove	
587 objects wi	ll be deleted from the network
Remove	Cancel

Entity # = 606 Relation # = 884

Now...

Go to "Layout" and click "Direct Force."

Same data, different look.

See if you can mouse over and identify drugs that affect the largest number of different proteins (Hint: Heparin is one.).

That's interesting, but what you'd really like to do is to identify those proteins that are the most frequently targeted by cholestasis-inducing drugs. In other words, instead of drugs connected to the largest number of different proteins (as seen in the previous slide), you'd like to identify individual proteins that are connected to the largest number of different drugs. They may be (by inference) the most common mediators of adverse cholestatic events.

How can you do this?

Well, it's going to take a little work and another trip outside Pathway Studio.

Are you ready? C'mon it's fun!

Yes, we are going to Excel (in every way).

4.7 Identify Proteins Most Frequently Targeted by Cholestasis-Inducing Drugs

First, from "Relation Table View" in Excel, click on "Export Relation Data," open in Excel. You should see something like this. Remove all but the first column and follow along carefully!

A	В	С	D	E	F	G
RelationSymbolicName	ObjectType	RelationNumber	RelationConfi	BiomarkerType	ChangeType	Source
negative DirectRegulation: sphingosine-1-phosphate HDAC1	DirectRegulation	9	3			
negative DirectRegulation: aspirin TBXA2R	DirectRegulation	8	3			
negative DirectRegulation: glibenclamide ABCC9	DirectRegulation	6	3			
negative DirectRegulation: norepinephrine HTR2A	DirectRegulation	10	3			
negative DirectRegulation: everolimus EGFR	DirectRegulation	7	3			
negative DirectRegulation: lisinopril MMP9	DirectRegulation	6	3			
negative DirectRegulation: lisinopril ACE	DirectRegulation	19	3			
negative DirectRegulation: fenofibrate SCARB1	DirectRegulation	5	3			
negative DirectRegulation: sulindac PPARD	DirectRegulation	8	3			
negative DirectRegulation: fenofibrate CETP	DirectRegulation	9	3			
negative DirectRegulation: nor-binaltorphimine OPRK1	DirectRegulation	599	3			
negative DirectRegulation: haloperidol SIGMAR1	DirectRegulation	62	3			

Copy and Paste the first column into two additional blank columns to the right.

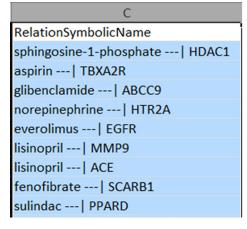
A	В	С
RelationSymbolicName	RelationSymbolicName	RelationSymbolicName
negative DirectRegulation: sphingosine-1-phosphate HDAC1	negative DirectRegulation: sphingosine-1-phosphate HDAC1	negative DirectRegulation: sphingosine-1-phosphate HDAC1
negative DirectRegulation: aspirin TBXA2R	negative DirectRegulation: aspirin TBXA2R	negative DirectRegulation: aspirin TBXA2R
negative DirectRegulation: glibenclamide ABCC9	negative DirectRegulation: glibenclamide ABCC9	negative DirectRegulation: glibenclamide ABCC9
negative DirectRegulation: norepinephrine HTR2A	negative DirectRegulation: norepinephrine HTR2A	negative DirectRegulation: norepinephrine HTR2A
negative DirectRegulation: everolimus EGFR	negative DirectRegulation: everolimus EGFR	negative DirectRegulation: everolimus EGFR
negative DirectRegulation: lisinopril MMP9	negative DirectRegulation: lisinopril MMP9	negative DirectRegulation: lisinopril MMP9
negative DirectRegulation: lisinopril ACE	negative DirectRegulation: lisinopril ACE	negative DirectRegulation: lisinopril ACE
negative DirectRegulation: fenofibrate SCARB1	negative DirectRegulation: fenofibrate SCARB1	negative DirectRegulation: fenofibrate SCARB1
negative DirectRegulation: sulindac PPARD	negative DirectRegulation: sulindac PPARD	negative DirectRegulation: sulindac PPARD
negative DirectRegulation: fenofibrate CETP	negative DirectRegulation: fenofibrate CETP	negative DirectRegulation: fenofibrate CETP
negative DirectRegulation: nor-binaltorphimine OPRK1	negative DirectRegulation: nor-binaltorphimine OPRK1	negative DirectRegulation: nor-binaltorphimine OPRK1
negative DirectRegulation: haloperidol SIGMAR1	negative DirectRegulation: haloperidol SIGMAR1	negative DirectRegulation: haloperidol SIGMAR1
negative DirectRegulation: glibenclamide NLRP3	negative DirectRegulation: glibenclamide NLRP3	negative DirectRegulation: glibenclamide NLRP3
nogative DirectPogulation: aspirin ITGA2P	norative DirectPerculation: aspirin LITCA2P	pagative DirectPagulation: achirin LITGA2P

Select column B and do a "replace all."

^m · 打	Ĥ	r F
Sort & Filter ≁	Find Selec	
Editing	æ	<u>F</u> ind
	ab 4ac	Replace 👻
	•	Go To. Replace (Ctrl+H) Go To
n: sphingos		Replace text in the document.
n: aspirin		Form <u>u</u> las
n: glibencla		Comments
n: norepine		Conditional Formatting
n: everolim		Constants
n: lisinopril		Data Validation
n: lisinopril	A	Select Objects
n: fenofibra	5	Selection Pane
n: sulindac		
h: fenofibra	ite -	CETP

Type in an asterisk (in Excel, * is a wild card), a pipe (|), and a space (don't forget the space!), and then click "Replace All."

Find and Replace	8 23
Find Replace	
Find what: * Replace with:	▼ ▼
	Options >>
Replace All Beplace Find All Find Next	Close


Column B should now look like this:

A	В	C
RelationSymbolicName	RelationSymbolicName	RelationSymbolicName
negative DirectRegulation: sphingosine-1-phosphate HDAC1	HDAC1	negative DirectRegulation: sphingosine-1-phosphate HDAC1
negative DirectRegulation: aspirin TBXA2R	TBXA2R	negative DirectRegulation: aspirin TBXA2R
negative DirectRegulation: glibenclamide ABCC9	ABCC9	negative DirectRegulation: glibenclamide ABCC9
negative DirectRegulation: norepinephrine HTR2A	HTR2A	negative DirectRegulation: norepinephrine HTR2A
negative DirectRegulation: everolimus EGFR	EGFR	negative DirectRegulation: everolimus EGFR
negative DirectRegulation: lisinopril MMP9	MMP9	negative DirectRegulation: lisinopril MMP9
negative DirectRegulation: lisinopril ACE	ACE	negative DirectRegulation: lisinopril ACE
negative DirectRegulation: fenofibrate SCARB1	SCARB1	negative DirectRegulation: fenofibrate SCARB1
negative DirectRegulation: sulindac PPARD	PPARD	negative DirectRegulation: sulindac PPARD
negative DirectRegulation: fenofibrate CETP	CETP	negative DirectRegulation: fenofibrate CETP
negative DirectRegulation: nor-binaltorphimine OPRK1	OPRK1	negative DirectRegulation: nor-binaltorphimine OPRK1
negative DirectRegulation: haloperidol SIGMAR1	SIGMAR1	negative DirectRegulation: haloperidol SIGMAR1
negative DirectRegulation: glibenclamide NLRP3	NLRP3	negative DirectRegulation: glibenclamide NLRP3
negative DirectRegulation: aspirin ITGA2B	ITGA2B	negative DirectRegulation: aspirin ITGA2B
negative DirectRegulation: ticlopidine P2RY12	P2RY12	negative DirectRegulation: ticlopidine P2RY12
negative DirectRegulation: isoniazid CYP3A4	СҮРЗА4	negative DirectRegulation: isoniazid CYP3A4

Select column C and do a "replace all."

Type an asterisk, a colon (:), and a space (don't forget the space). then click "Replace All."

Find and Replace	:e	? 🗙
Fin <u>d</u> Re	place	
Find what:	*:	•
Replace with:		Options >>
		Obříous >>
Replace <u>A</u> ll	Replace Find All Find Next	Close

This will get you to here:

And again, one more time, type in two dashes, and an asterisk, then click "Replace All."

That will get you to here:

В	С
RelationSymbolicName	RelationSymbolicName
HDAC1	sphingosine-1-phosphate
TBXA2R	aspirin
ABCC9	glibenclamide
HTR2A	norepinephrine
EGFR	everolimus
MMP9	lisinopril
ACE	lisinopril
SCARB1	fenofibrate
PPARD	sulindac
CETP	fenofibrate

So what have you accomplished by this maneuver? Well, you now have extracted both protein and drug

information from each of the imported relations (as is still reflected in column

A).

Feel free to re-label the headers for columns B & C, proteins and drugs, respectively.

By the way, why do you think you used two dashes instead of one in the last "replace all"? That's right (you are so smart)! You had to use two because many of the drug names have an

embedded dash, and that would have messed up everything!

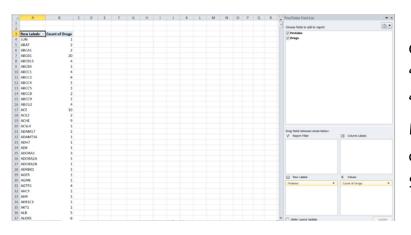
Now, you can sort alphabetically by protein name.

You can see right away that many of the proteins map to multiple drugs, and that is precisely the information we set out to capture. But, how do you quantify them? You don't want to count all 722-832 entities!

You don't have to. Excel will do it for you!

В	С
Proteins	Drugs
ABAT	valproic acid
ABAT	gabapentin
ABCA1	glibenclamide
ABCA1	cyclosporine
ABCB1	chlorpromazine
ABCB1	amiodarone
ABCB1	itraconazole
ABCB1	atorvastatin
ABCB1	tamoxifen
ABCB1	fenofibrate
ABCB1	amitriptyline
ABCB1	verapamil

There are several different ways to accomplish your goal in Excel, one of which is to use the subtotal function. But, an even faster (and more efficient way) is to use something called a "pivot table," which is designed in Excel to answer questions just like this.



So, here you go! First, select columns B and C, and then go to Insert, Pivot Table, and click OK when the window opens.

Fi	File Home Insert Page Layout						Formulas Data Revie		view	view View		Acrobat Ablebits		
	\$			8 N	P					٢			:*:	
Pivot	Table •	Table	Picture	Clip Art	Shapes S	SmartArt	Screensho	t Column	Line	Pie *	Bar	Area	Scatter (
13	Pivot	Table			Illustratio	ns				(harts			
	Piv	nsert Pive		(£	Prote	ins			В		С		
1	Rel	Summari	ze data us	ing a P	ivotTable.				Prote	ins	Drugs	Drugs		
2	ne	PivotTabl	es make it	t easy t	o arrange	ine-1	-phospha	ate F	ABAT		valpro	oic aci	id	
3	ne		marize cor down on o		ed data	- TB	XA2R		ABAT		gabap	pentin		
4	ne _f –					mide	ABC	C9	ABCA	1	gliber	Iclami	de	
5	ne _{ • Press F1 for more help.					phrin	phrine HTR2A			1	cyclo	cyclosporine		
6	nega	tive Dir	ectRegu	lation	: everoli	mus	EGFR		ABCB1		chlor	chlorpromazine		
7													e	

This should open up a new worksheet in Excel that looks something like this:

Protitation Image:	PhotTaba	A	8	C	D	E	F	6	н	1	J	ĸ	L	M	N	-	PivotTable Field List		
PhotTaba	PhotTaba															-1	Oncose fields to add to report:		2
Image: Section of the section of t	Image: Section of the section of t		d a report, d	hoose fields															
V Apart Rer II Glann Labels	V Apart Rer II Glann Labels																		
V Apart Rer II Glann Labels	V Apart Rer II Glann Labels																		
E Ren Litter X Taber	Lij Ros Lidets X. Valver																	Column Labels	
Li Rer Litteh X Valuer	Li flor Libris X Values																		
Lij Ren Labels X Values	Li Ror Libels X Yahar																		
																	Lill Rev Labels	X Values	

Check both proteins and drugs in "PivotTable Field List." Drag Proteins to "Row Labels" and Drugs to "Values" (Hint: Make sure values are set to Count, which is controlled in dropdown box by "Value Field Settings.").

Copy the data from columns A and B into a new worksheet and sort by Column B (largest to smallest).

Note the presence of five CYP proteins in the top 10 genes/proteins inhibited by the largest number of cholestasis-inducing drugs. Take a closer look at the top-ranked CYP3A4 gene/protein.

1	A	В
1	Protein Name	Drug #
2	PTGS2	26
3	CYP3A4	23
4	ABCB1	21
5	TNF	17
6	ACE	11
7	CYP19A1	11
8	CYP2D6	11
9	ACHE	10
10	CYP2C9	10
11	DRD2	10
12	CYP2C19	9

CYP3A4 therapeutic implication for cholestasis

1 Jan 2014

CYP3A4 activity may be useful in treating cholestasis, this review stated. CYP3A4 is a major cytochrome P450. It catalyses a broad range of substrates including xenobiotics and endogenous compounds. Cholestasis is a condition where there is an excessively high concentration of bile which is very toxic. CYP3A4 detoxifies bile acids, a function that could be used for treating cholestasis. CYP3A4 is responsively up regulated in cholestasis as a defence mechanism. However, the regulation of CYP3A4 is complicated by estrogen, and its activity is inhibited by the detergent effect of the accumulated bile. It was concluded from the study that reducing the factors that inhibit CYP3A4 and employing CYP3A4 activators to maximize its activity for detoxification of bile acids could be an effective approach for the treatment of cholestasis.

Chen, et al. The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med. 2014 Jan;2(1):7. [Link]

The role of CYP₃A₄ in the biotransformation of bile acids and therapeutic implication for cholestasis.

Abstract

CYP₃A₄ is a major cytochrome P₄₅o. It catalyzes a broad range of substrates including xenobiotics such as clinically used drugs and endogenous compounds, such as bile acids. Its function to detoxify bile acids could be used for treating cholestasis, which is a condition characterized by accumulation of bile acids. Although bile acids have important physiological functions, they are very toxic when their concentrations are excessively high. The accumulated bile acids in cholestasis can cause liver and other tissue injuries. Thus, control of the concentrations of bile acids is critical for treatment of cholestasis. CYP3A4 is responsively unregulated in cholestasis mediated by the nuclear receptors farnesol X receptor (FXR) and pregnane X receptor (PXR) as a defense mechanism. However, the regulation of CYP3A4 is complicated by estrogen, which is increased in cholestasis and down regulates CYP3A4 expression. The activity of CYP3A4 is also inhibited by accumulated bile acids due to their property of detergent effect. In some cholestasis cases, genetic polymorphisms

of the CYP3A4 and PXR genes may interfere with the adaptive response. Further stimulation of CYP3A4 activity in cholestasis could be an effective approach for treatment of the disease. In this review, we summarize recent progress about the roles of CYP3A4 in the metabolism of bile acids, its regulation and possible implication in the treatment of cholestasis.

Many thanks to Anton Yuryev, Pat Morgan, and Nikolai Daraselia whose previous work with modeling Drug-Induced Cholestasis using Pathway Studio inspired this workflow.

- Without prior knowledge you've identified a promising new target (CYP3A4) for treating cholestasis, a very common, induced, adverse drug effect.
- You've learned a lot of Pathway Studio functionalities along the way including :
 - Systematic network expansion—first drugs, then proteins.
 - Filtering using the "Interactive Network Filter" for surfacing the most important information.
 - Some PS tricks like "Invert Selection," and removing "Unconnected Entities."
- And, finally, you've learned some useful things in Excel, such as sorting, filtering, replacing, and don't forget the PivotTable (very useful)!

And that's enough for one day!

Study Questions 4

- 1. What's the number of small molecules that induce cirrhosis?
- 2. Identify the top ten small molecules (by # of references) that induce cirrhosis.
- 3. Add Reaxys ID to all small molecules from Question 1, not just those sorted by number of references (Hint: Customize Table). Select and remove those that do not have a Reaxys ID. Give the number of small molecules with and without the Reaxys ID.
- 4. Identify the number of proteins inhibited (negatively regulated) by the top ten small molecules from Question 2.
- 5. Identify proteins that inhibit cirrhosis.
- 6. What is the number of overlapping proteins from Question 3 and Question 4? List them here.

For Protein Modification(s), How Do I...

Exercise 4.1: Find protein(s) that acetylate/deacetylatea protein? Identifies proteins involved in acetylation/deacetylation or target protein(s)

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "ProtModification"

Add condition: Mechanism "is equal to" acetylation or deacetylation

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 4.2: Find protein(s) that cleave a protein? Identifies proteins involved in the proteolytic cleavage of target protein(s).

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: "Protein" Relations: Select "ProtModification"

Add condition: mechanism "is equal to" cleavage

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 4.3: Find proteins(s) that methylate/demethylate a protein?

Identifies proteins involved in the methylation/demethylation of target protein(s). **Step 1:** Create New Pathway or within Pathway, select a protein(s) **Step 2:** Select Add- > Network Builder **Step 3:** Select Expand Pathway, Advanced Expand Pathway Tool **Step 4:** Select Direction: Upstream **Step 5:** Entities: Select "Protein" Relations: Select "ProtModification" **Add condition:** mechanism "is equal to" methylation/demethylation Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 4.4: Find protein(s) that phosphorylate/dephosphorylate a protein?

Identifies protein(s) involved in the phosphorylation/dephosphorylation of target protein(s).

- **Step 1:** Create New Pathway or within Pathway, select a protein(s)
- **Step 2:** Select Add- > Network Builder
- Step 3: Select Expand Pathway, Advanced Expand Pathway Tool
- Step 4: Select Direction: Upstream
- **Step 5:** Entities: Select "Protein" Relations: Select "ProtModification"
- Add condition: mechanism "is equal to" phosphorylation/dephosphorylation

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 4.5: Find protein(s) that ubiquitinate a protein?

Identifies protein(s) involved in the ubiquitination of target protein(s).

- **Step 1:** Create New Pathway or within Pathway, select a protein(s)
- **Step 2:** Select Add- > Network Builder
- Step 3: Select Expand Pathway, Advanced Expand Pathway Tool
- Step 4: Select Direction: Upstream
- Step 5: Entities: Select "Protein" Relations: Select "ProtModification"
- Add condition: mechanism "is equal to" ubiquitination

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 5

Variant Analysis II

Contents

5.1	Import Variant Data (.vcf files)	75
5-3	Exploring the Biology of Apoptosis-related Genes	81
5•4	Variant Analysis of Multiple Genomes	81
5.5	Import Genotypes and Analyze Case versus Controls	84
5.6	Investigate Biological Functions for Selected Genes	84
Study	Questions 5	91
How [Do I Relations localized in a tissue/organ/cell type/cell line:	92
Exerci	se 5.1: Find relations that are known to be found in a specific organ?	92
Exerci	se 5.2: Find relations that are known to be found in a specific tissue?	.92
Exerci	se 5.3: Find relations that are known to be found in a specific CellType?	.93
Exerci	se 5.4: Find relations that are known to be found in a specific CellLineName?	.93

Variant Analysis of an Individual Genome

5.1 Import Variant Data (.vcf files)

The first step in analysis of genomic sequence data is to import the data into Pathway Studio. The format required for both genomic or exome data is .vcf files. (Note: The time it takes to upload a file is dependent on the file size and number of files.)

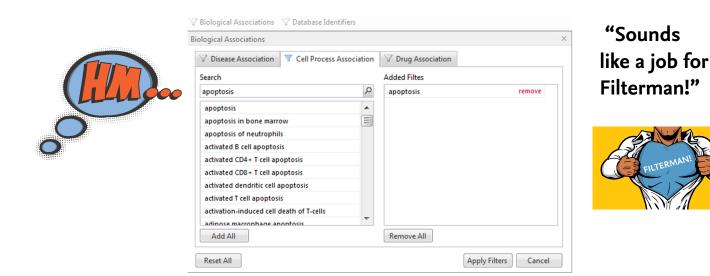
Submission date	Nov 07, 2013					
Last update date	Nov 12, 2013		1	Opening GSM1261031	83 var fit vcf oz	
Contact name	Anelia Horvath					l.
E-mail	horvatha@gwu.edu			You have chosen to c	pen:	
Phone	202-994-2114			GSM1261031_	83_var.flt.vcf.gz	
Organization nam	ne GWU			which is: GZ file	e (1.8 MR)	
Department	Biochemistry and Molecular M	edicine			ncbi.nlm.nih.gov	
Street address	2300 Eye Street NW					
City	Washington			What should Firefox	do with this file?	
State/province	DC			O Open with	7-Zip GUI (default)	•
ZIP/Postal code	20037					
Country	USA			Save File]
Platform ID Series (1) Relations	GPL11154 GSE52194 mRNA-sequencing	g of breast ca	ncer subtype			OK Cancel
BioSample	SAMN02400305					OK
SRA	SRX374865					
5	Supplementary file	Size	Download	File type/resource	e	
GSM1261031_8	3_denovo_transcripts.gtf.gz	16.4 Mb	(ftp)(http)	GTF		
CCM1261021 0	3_var.flt.vcf.gz	1.8 Mb	(ftp)(http)	VCF		
0501201051_0		10.0.14	(ftp)(http)	GTF		
	3_with-ref_transcripts.gtf.gz	13.3 Mb	(011		
	, , , , ,	13.3 MD	(ftp)	SRA Experiment		
GSM1261031_8 SRX/SRX374/SR	, , , , ,	13.3 MD				

Start by analyzing a single exome file from a HER2 positive breast tumor biopsy sample. The file: GSM1261031_84_var.flt.vcf.gz can be found here: <u>GSM1261031</u> or from Dropbox (<u>data for Module 5</u>)

Download and save the file somewhere you can find it!

To upload a single file, go to the Start tab and select Import>Genotype:

ATHWAY STUDIC						
rt 🍈 Import Genotypes 🖂						
Projects	Import					
Curated Pathways Ontologies PS Database Content Variation Database	Experiment Import gene expression metabolomics experiment Import Experiment	, proteomics, or	Entity List Import a list of genes/protein molecules, functional classes, types to find relevant pathway and networks based on the Er list. Import Entity List	or other Entity s, functions	Studio. Import Genotypes	nalysis within Pathway CF files for analysis within Pathway Studi
Import						
Create			Start New Import			×
Analyze How Do I			Folder to save:	Step 1. Select folder.		
						Back Next
	TUDIO®					Back Next
			Ba	sic set		Dack Next
➡ Start Import Geno			Ba	sic see		Back
Start Mew Import				sic set		Back Next
Start Mew Import Gene Start New Import Import wizard	types ×		B.	sic ser		Back Next
Start Mew Import	types ×		Ba	sic ser		Dack Next
Start Mew Import Gener Start New Import Import wizard Step 2. Select file Load from Comp	types ×		Ba	sic ser	J	Deck
Start Mew Import Gener Start New Import Import wizard Step 2. Select file Load from Comp	types × (3). Uter Load from URL to files selected.			sic sea		Dack Next
→ Start	types × (s). (s). (o files selected. Description	51031_83_vər.fit.vcf.gz, 03/	Size (KB) Action	sic se		Deck
Start Mew Import Gence Start New Import Import vizard Step 2. Select file Load from Comp Browse N File Name	types × (s). (s). (o files selected. Description	61031_83_var.fit.vcf.gz, 03/	Size (KB) Action	sic sea		Dack Next
Start Mew Import Gence Start New Import Import vizard Step 2. Select file Load from Comp Browse N File Name	types × (s). (s). (o files selected. Description	51031_83_var.fit.vcf.gz, 03/	Size (KB) Action	x Statu		Teck Next
Start Mew Import Gence Start New Import Import vizard Step 2. Select file Load from Comp Browse N File Name	types × (s). (s). (o files selected. Description	61031_83_var.fit.vcf.gz, 03/	Size (KB) Action	×	scessing file	
Start Mew Import Gence Start New Import Import vizard Step 2. Select file Load from Comp Browse N File Name	types × (s). (s). (o files selected. Description	61031_83_var.fit.vcf.gz, 03/	Size (KB) Action	× Statu Pro		Actions
Start Mew Import Gence Start New Import Import vizard Step 2. Select file Load from Comp Browse N File Name	types × (s). (s). (o files selected. Description	51031_83_var.flt.vcf.gz, 03/	Size (KB) Action . 1817 Cancel	× Statu Pro		Actions


Double-click on the imported .vcf file now located in your My Projects folder. This will open up the data in the Variant Analysis window.

Projects	My Project < > My Projects
Curated Pathways	🔲 🛋 View 🔹 🧾 Select 🔹 ॏ New 🔹 🛅 Edit 🔹 🕑 Import 👻 😳 Tools 🔹
Ontologies	My Projects
PS Database Content	
Variation Database	
import	Group_C/83 /tophat_out/83
+ Create	
🕀 Analyze	
? How Do I	

Loc	ation 🛛 🖓 Gene Reg	gion 🖓 Functi	onal Impact	7 Frequ	ency 🖓	Confidence 🛛 🖓 Biolog	ical Association	s 🛛 🖓 Database Iden	tifiers					Export Copy Ge	enes - Clea	r Selecti
cf.sn	mpl = 3014															Clea
	rsId	Chr	Location	ref	Alt.	Gene	Gene region	Transi. Impact	GERP++ Score	SIFTScore	PolyPhen2 Score	Allele Frequency	Quality	Read Depth at I	Filter	
	1	1	336797	G	A	HYDIN2;LOC10099	Intergenic						6.02	2	MISSED	
	2 rs1578391	1	565286	c	т	MTND2P28;LOC10	Intergenic					0.4089	112	125	MISSED	
	3 rs3094315	1	752566	G	A		Intergenic					0.2817	9.31	2	MISSED	
	4 rs3131966	1	754964	С	т	FAM87B	SUTR					0.3367	6.02	2	MISSED	
	5 rs4951862	1	757936	С	A		Intergenic					0.2512	9.31	2	MISSED	
	6 rs3131954	1	758626	C	т		Intergenic					0.2486	25	3	MISSED	
	7 rs28830877	1	774736	Α	c	FAM72C;LINC01128	Intron					0.0317	4.61	2	MISSED	
	8 rs28873693	1	774785	G	A	FAM72C;LINC01128	Intron					0.0381	6.02	2	MISSED	
	9 rs2977612	1	780785	т	A	FAM72C;LINC01128	Intron					0.3307	6.02	2	MISSED	
	10 rs2905036	1	792480	C	т	LINC01128;SRGAP	SUTR					0.0232	6.02	2	MISSED	
	11 rs13303369	1	852875	C	т	SRGAP2D;LOC101	BUTR					0.4942	9.31	2	MISSED	
	12 rs4970461	1	852964	Т	G	LOC100130417;SR	BUTR					0.2476	5.29	2	MISSED	
	13 rs6689107	1	857728	т	G	SRGAP2D;LOC101	Intergenic					0.0457	6.02	2	MISSED	
4	Page 1 of 2	2738 🕨 🕅			-		•••••								splaying 1 -	0

When the file is open, you will see that it has more than 100,000 variant SNPs.

Question: Are there any novel (not yet reported), potentially damaging variants in this data set in genes known to be associated with the cellular process of apoptosis?

How does this work?

											-	B		
Biological Associations	7 Database Identifie	rs												
logical Associations							×				1 dist			
Disease Association	Cell Process Asso	ciation	V Drug Asso	ciation										
Search			Added Filtes								10			
apoptosis		Q	apoptosis						2	a.				
apoptosis		-												
apoptosis in bone marrow	1	=												
apoptosis of neutrophils	PATHWAY S	STUDIO)°			8	asic search for pr	oteins, diseases, pathwa	rs, etc Q Advanced				lelp 🔻 Chris Cl	hea
activated B cell apoptosi	Start Import Ger Cocation V Gene Re	notypes ×	Group_C/83/top nctional Impact		cy ∵∀ Confiden				<u>Advanced</u>		L		lelp ▼ Chris Cl opy Genes ▼ Clear S	Sele
activated B cell apoptosi activated CD4+ T cell apc activated CD8+ T cell apc	Start Import Ger Location Gere Re ps.cell IN (apoptosis) Al	notypes × egion ∵⊽ Fu ND vcf.smpl :	Group_C/83/top nctional Impact S 3014	7 Frequenc		ce 🍸 Biological Ad	ssociations 🛛	atabase Identifiers		Allele Freque	Cell processes	💽 Export Co	opy Genes 🔹 Clear S	Sele
activated B cell apoptosi activated CD4+ T cell apc activated CD8+ T cell apc activated CD8+ T cell ap activated dendritic cell a activated T cell apoptosis	Start Import Ger Vocation V Gene Re	notypes ×	Group_C/83/top nctional Impact		ry ⊽ Confiden Gene ISG15		ssociations 🛛		SIFTSCORE PolyPhen2 Sc	Allele Freque 0.0968	Cell processes apoptosis		opy Genes 🔹 Clear S	Sele
activated B cell apoptosi activated CD4+ T cell apo activated CD8+ T cell apo activated dendritic cell ap	Start	notypes × egion V Fu ND vcf.smpl = Ch 1	Group_C/83/top nctional Impact = 3014 Location ref 940921 T 949654 A	7 Frequenc Alt. G	Gene ISG15 ISG15	ce T Biological As Gene region SUTR CDS	ssociations 🛛	atabase Identifiers		0.0968 0.1743	apoptosis apoptosis	Export Co Quality Read Dep 6.02 164	opy Genes Clear S th a Filter 2 MISSED 31 MISSED	Sele
activated B cell apoptosi activated CD4 + T cell apo activated CD8 + T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d adinose macrophage apr		notypes × egion VFu ND vcf.smpl : Ch 1 1	Group_C/83/top nctional Impact = 3014 Location ref 948921 T 949654 A 974570 T	7 Frequenc Alt. C G G	Gene ISG15 ISG15 AGRN	ce T Biological As Gene region SUTR CDS Intron	ssociations 🛛	atabase Identifiers		0.0968 0.1743 0.1052	apoptosis apoptosis apoptosis	Export Co Quality Read Dep 6.02 164 6.02	th a Filter 2 MISSED 31 MISSED 2 MISSED	Sele
activated B cell apoptosi activated CD4 + T cell apo activated CD8 + T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d	Start	notypes × egion VFu ND vcf.smpl : Ch 1 1 1	Group_C/83/top nctional Impact = 3014 Location ref 948951 T 948954 A 974570 T 981931 A	Alt. C G G G	Gene ISG15 ISG15 AGRN AGRN	Ce Biological As Gene region SUTR CDS Intron CDS	ssociations 🛛	atabase Identifiers		0.0968 0.1743 0.1052 0.2023	apoptosis apoptosis apoptosis apoptosis	Cuality Read Dep 6.02 164 6.02 3.96	th a Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD6 - T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated Activation-induced cell d Add All	Start Inport Ge Jocation Gene Re pr.cell IN (apoptosis) Al ristd rist5442 2 rs5997 3 rs245534 4 rs2455328 5 rs3128100	notypes × region V Fu ND vcf.smpl = Ch 1 1 1 1 1 1	Group_C/83/top nctional Impact = 3014 Location ref 948951 T 949554 A 974570 T 961931 A 962662 T	7 Frequenc Alt. C G G	Gene ISG15 ISG15 AGRN AGRN AGRN	Gene region SUTR CDS Intron CDS Intron	ssociations 🛛	latabase Identifiers		0.0968 0.1743 0.1052 0.2023 0.0192	apoptosis apoptosis apoptosis apoptosis apoptosis	Export Co Quality Read Dep 602 164 602 308 9.31	th a Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 2 MISSED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD6 - T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated Activation-induced cell d Add All	Start	notypes × egion V Fu ND vcf.smpl = Ch 1 1 1 1 1 1 1 1	Group_C/83/top nctional Impact = 3014 Location ref 948921 T 949554 A 974570 T 901931 A 901931 A 901931 A	Alt. C G G C C	Gene ISG15 ISG15 AGRN AGRN AGRN AGRN	Gene region SUTR CDS Intron CDS Intron CDS	ssociations 🛛	atabase Identifiers		0.0968 0.1743 0.1052 0.2023 0.0192 0.1641	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Control Contro Control Control Control Control Control Control Control Control Co	th a Filter 2 M55ED 31 M55ED 2 M55ED 2 M55ED 2 M55ED 2 M55ED 7 M55ED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD8 - T cell apo activated dendritic cell ap activated T cell apoptosis activation - induced cell d winnose macrophane any Add All	Start Inport Ge Jocation Gene Re pr.cell IN (apoptosis) Al ristd rist5442 2 rs5997 3 rs245534 4 rs2455328 5 rs3128100	notypes × region V Fu ND vcf.smpl = Ch 1 1 1 1 1 1	Group_C/83/top nctional Impact = 3014 Location ref 948951 T 949554 A 974570 T 961931 A 962662 T	Alt. C G G G	Gene ISG15 ISG15 AGRN AGRN AGRN	Gene region SUTR CDS Intron CDS Intron	ssociations 🛛	latabase Identifiers		0.0968 0.1743 0.1052 0.2023 0.0192 0.1641 0.4543	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Export Co Quality Read Dep 602 164 602 308 9.31	th a Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 2 MISSED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD6 - T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated Activation-induced cell d Add All	• Start	notypes × region V Fu ND vcf.smpl 1 Ch 1 1 1 1 1 1 1 1	Group_C/83/top nctional Impact sold tocation ref 949554 A 974570 T 901931 A 96262 T 964302 T	Alt. C G G C C	Gene ISG15 ISG15 AGRN AGRN AGRN AGRN	Gene region SUTR CDS Intron CDS Intron CDS CDS CDS	ssociations 🛛	latabase Identifiers		0.0968 0.1743 0.1052 0.2023 0.0192 0.1641 0.4543 0.2109	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Graport Co Quality Read Dep 6.02 164 6.02 9.93 9.33 34.3	th a Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 4 MISSED 4 MISSED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD6 - T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated Activation-induced cell d Add All	Start h Import Ge Jocction Gene Re ps.cell IN (apoptoris) A rist rist	notypes X fills	Group_C/83/top nctional Impact = 3014 Location ref 948921 T 949954 A 9474570 T 961931 A 962462 T 962944 T 964902 T 968503 A	Alt. C G G C C	Gene ISG15 ISG15 AGRN AGRN AGRN AGRN AGRN	Gene region SUTR CDS Intron CDS Intron COS Intron COS Intron	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0968 0.1743 0.1052 0.2023 0.0192 0.1642 0.4543 0.2109 0.4147	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Cuality Read Dep Co Co Co Co Co Co Co Co Co Co Co So	th a Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 2 MISSED 4 MISSED 4 MISSED	Sele
activated B cell apoptosi activated CD4 + T cell apo activated CD8 + T cell apo activated CD8 + T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d actionace macrophane and Add All	Start https://www.start.org/linear/	notypes X [egion V Fu ND vcf.smpl a Ch 1 1 1 1 1 1 1 1 1 1 1 1 1	Group_C/83/top- nctional impact solid Location ref 949921 T 949954 A 974570 T 901931 A 974570 T 901931 A 902904 T 902904 T 904302 T 904302 C	Alt. C G G C C	Gene ISG15 ISG15 AGRN AGRN AGRN AGRN AGRN AGRN	Gene region SUTR COS Intron COS Intron COS Intron COS Intron COS	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0968 0.1743 0.1052 0.2023 0.1641 0.4543 0.2109 0.4147 0.0021	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Buport Co Quality Read Dep 6.02 164 6.02 398 9.31 34.3 34.5 40.5 17.1 17.1	th a Filter 2 MISSED 2 MISSED 2 MISSED 2 MISSED 2 MISSED 7 MISSED 4 MISSED 3 MISSED 3 MISSED	Sele
activated B cell apoptosi activated CD4 - T cell apo activated CD8 - T cell apo activated dendritic cell ap activated T cell apoptosis activated T cell apoptosis activation-induced cell d adinose merconhage and Add All	Start h Import Ge Location Gene Re pscell IN (spoptoris) A ridd rist642 risde ridd rid45334 ri2465328 ri328200 6 ri30267 ri9442991 8 ri2799071 ri4275402 10 ris7270072	notypes X [egion V Fu ND vcf.smpl a Ch 1 1 1 1 1 1 1 1 1 1 1 1 1	Group_C/83/top nctional impact = 3014 Location ref 948921 T 948954 A 947570 T 961931 A 962942 T 962944 T 962944 T 964902 T 968503 A 990510 C	Alt. C G G C C	Gene ISG15 ISG15 AGRN AGRN AGRN AGRN AGRN AGRN AGRN	Gene region SuTR COS Intron COS Intron COS COS Intron COS SUTR	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0968 0.1743 0.1052 0.2023 0.1592 0.1641 0.4543 0.2109 0.4147 0.0822 0.154	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Constraint Constraint Quality Read Dep 6.02 164 6.02 398 9.31 34.3 34.5 40.5 17.1 54.3 14.4 36.5	th A Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 2 MISSED 4 MISSED 4 MISSED 4 MISSED 4 MISSED 5 MISSED 5 MISSED	Sele
activated B cell apoptosi activated CD4+ T cell apo activated CD8+ T cell apo activated dendritic cell ap activated dendritic cell ap activated T cell apoptosis activation-induced cell d atinose maccophane apr	Start h Import Ge Jocation Gene Re ps.cell IN (apoptoris) A rist ris rist rist rist rist ris	notypes × region V Fu ND vcf.smpl or Ch., 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Group, C/83/top entional Impact 3014 Location ref 948654 A 949554 A 942570 T 91313 A 902294 T 948503 A 900200 C 900037 C 900077 C 900077 C	AR. C G G C C C C T T T A A A	Gene ISG15 ISG15 ISG15 AGRN AGRN AGRN AGRN AGRN AGRN AGRN AGRN	Gene region SUTR COS Intron COS Intron COS Intron COS Intron COS JUTR JUTR JUTR JUTR	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0960 0.1743 0.0552 0.2023 0.0192 0.1643 0.4543 0.2109 0.4147 0.0023 0.1538 0.0777	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Export Cc Quality Read Dep 602 164 602 396 931 343 343 345 405 171 543 144 365 541	th a. Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 3 MISSED 4 MISSED 3 MISSED 3 MISSED 3 MISSED 3 MISSED 5 MISSED 6 MISSED	Sele
activated B cell apoptosi activated CD4+ T cell apo activated CD8+ T cell apo activated CD8+ T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated T cell apoptosis activated T cell apoptosis activated T cell apoptosis activated T cell apoptosis	Start	notypes × region V Fu ND vef.smpl Ch 1 1 1 1 1 1 1 1 1 1 1 1 1	Group, C/83/htsp. nctional Impact = 3014 Location ref 948054 A 948554 A 944550 T 912994 T 902994 T 902000 C 9000517 C 9000517 C 9000517 C 9000517 C	AR. C G G C C C T T T T A A G	Gene 15G15 15G15 15G15 AGRN AGRN AGRN AGRN AGRN AGRN AGRN AGRN	Gene region SuTR COS Intron COS Intron COS COS Intron COS SuTR SuTR SuTR SuTR SuTR SuTR	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0960 0.1743 0.052 0.023 0.1641 0.4543 0.2109 0.4543 0.2109 0.4147 0.0821 0.154 0.1558 0.1558	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Buport Co Quality Read Dep 6.02 164 6.02 39.3 9.31 34.3 34.5 40.5 17.1 54.3 36.5 59.1 36.4 46.4	h A Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 3 MISSED 4 MISSED 4 MISSED 4 MISSED 5 MISSED 6 MISSED 6 MISSED 6 MISSED 6 MISSED	
activated B cell apoptosi activated CD4+ T cell apo activated CD8+ T cell apo activated CD8+ T cell apo activated dendritic cell ap activated T cell apoptosis activation-induced cell d activated T cell apoptosis activation-induced cell d activated T cell apoptosis activated T cell apoptosis activated T cell apoptosis activated T cell apoptosis	Start h Import Ge Jocation Gene Re ps.cell IN (apoptoris) A rist ris rist rist rist rist ris	notypes × 1 region V Fu ND vcf.smpl 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Group, C/83/top entional Impact 3014 Location ref 948654 A 949554 A 942570 T 91313 A 902294 T 948503 A 900200 C 900037 C 900077 C 900077 C	AR. C G G C C C C T T T A A A	Gene ISG15 ISG15 ISG15 AGRN AGRN AGRN AGRN AGRN AGRN AGRN AGRN	Gene region SUTR COS Intron COS Intron COS Intron COS Intron COS JUTR JUTR JUTR JUTR	ssociations 🛛	dtabase Identifiers GERP++ Score -0.32		0.0968 0.1743 0.1052 0.2023 0.6441 0.4543 0.2109 0.4447 0.0822 0.1538 0.0777 0.0433 0.0483	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Export Cc Quality Read Dep 602 164 602 396 931 343 343 345 405 171 543 144 365 541	th a. Filter 2 MISSED 31 MISSED 2 MISSED 2 MISSED 2 MISSED 3 MISSED 4 MISSED 3 MISSED 3 MISSED 3 MISSED 3 MISSED 5 MISSED 6 MISSED	Sele

But wait we've forgot something! We said we wanted novel variants. How do we do that? (see Variant analysis I) OK, maybe you don't remember this but when we want something novel we can simply change the setting under Frequency to "Novel" (i.e., a variant not currently found in dbSNP) select "Homozygous" for maximum genetic impact.

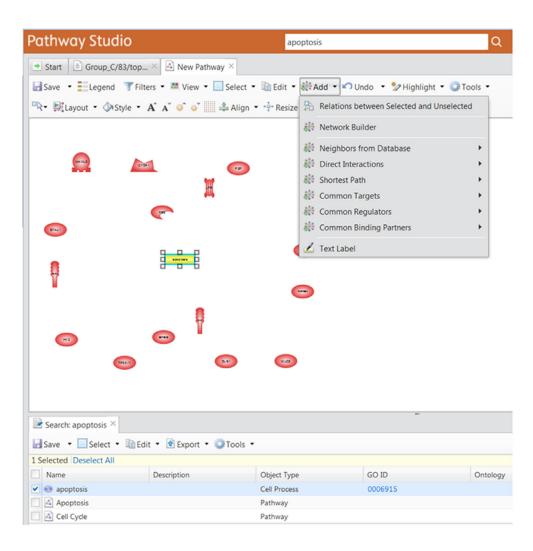
								×							
Is Novel (not in	n dbSNP)														
Minor Allele freque	ncy: >	•				in 1000 Ge	nomes Projec	t							
- Sample															
Sample															
Variants:	Homozy Heteroz Hemizy Ambigu	gous Jous													
Reset						Ok	Cancel								
Start March Import Genotypes V Location V Gene Region				r ∨ Confidence	🍸 Biological A	issociations 🖓 D	atabase Identifiers					🔮 Exp	oort Copy Gen	es → Clear	Selection
	✓ Functional I	npact 🍸	Frequency	✓ Confidence	🐨 Biological A	ussociations 🖓 D	atabase Identifiers					🖻 Exp	oort Copy Gen	es → Clear	Selection Clear
♥ Location ♥ Gene Region	Functional I	npact 🍸	Frequency	Gene		ssociations 🖓 D	atabase Identifiers GERP++ Score	SIFTScore	PolyPhen2 Sc	Allele Freque	Cell processes	🕑 Exp Quality	oort Copy Gen Read Depth a	es • Clear Filter	
✓ Location ✓ Gene Region	Functional I el=true AND vo 	npact 🍸	Frequency					SIFTScore	PolyPhen2 Sc	Allele Freque	Cell processes apoptosis		Read Depth a		
Inclusion Inclusion Inclosing	Functional I el=true AND vo Locatio 1 1509	npact 🕎 .smpl = 301	Frequency 4 Alt.	Gene	Gene region			SIFTScore	PolyPhen2 Sc	Allele Freque		Quality	Read Depth a	Filter	Clear
Location Gene Region Scell IN ('apoptosis') AND nove • rsld Ch. 1	Functional I el=true AND vo Locatio 1 1509 1 1753	smpl = 301	Frequency 4 Alt. AC	Gene SSU72	Gene region Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis	Quality 3.66	Read Depth a	Filter MISSED	Clear
Location Gene Region Secell IN (apoptosis') AND nove # rsld Ch. 1 2	 Functional I el=true AND vo Locatio 1 1509 1 1753 1 1758 	npact y .smpl = 301 . ref .48 ACC .56 T	Frequency 4 Alt. AC C	Gene SSU72 GNB1	Gene region Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis	Quality 3.66 6.02	Read Depth a	Filter MISSED MISSED	Clear
✓ Location	Functional I el=true AND vo 1 1509 1 1753 1 1758 1 1777	npact smpl = 301 ref 648 ACC 656 T 77 G	Alt. Alt. AC C A	Gene SSU72 GNB1 GNB1	Gene region Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis	Quality 3.66 6.02 6.02	Read Depth a	Filter MISSED MISSED MISSED	Clear
V Location V Gene Region ps.cell IN (apoptosis) AND nove rstd Ch. 2 3 4	Functional I el=true AND vc 1 1509 1 1753 1 1758 1 1777 1 1778	ref 48 ACC 556 T 777 G 448 A	Alt. AC C AT	Gene SSU72 GNB1 GNB1 GNB1	Gene region Intron Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 6.02 9.9	Read Depth a	Filter MISSED MISSED MISSED MISSED	Clear
V Location ✓ Gene Region vertication vertit vertit vertication vertication	Functional I el=true AND vc 1 1509 1 1753 1 1758 1 1777 1 1778 1 1786	ref ismpl = 301 ref i48 ACC i56 T i77 G i48 A i48 A i48 T	Alt. AC C A AT C	Gene SSU72 GNB1 GNB1 GNB1 GNB1	Gene region Intron Intron Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 6.02 9.9 9.31	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED	Clear
V Location	Functional I el=true AND vo 1 1509 1 1753 1 1753 1 1777 1 1778 1 1786 1 1812	npact smpl = 301 ref 48 ACC 56 T 77 G 448 A 448 A 148 T 461 T	Alt. Alt. AC C A AT C C C	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1	Gene region Intron Intron Intron Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED	Clear
V Location V Gene Region V ps.cell IN ('apoptosis') AND nove * rsid Ch. 1 2 3 4 5 6 7	Functional I el=true AND vo 1 1509 1 1753 1 1775 1 1777 1 1778 1 1786 1 1812 1 1813	npact smpl = 301 ref 448 ACC 448 ACC 448 A 448 A 148 A	4 Alt. AC C A AT C C C C C	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1	Gene region Intron Intron Intron Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED	Clear
↓ Location ↓ Gene Region ps.cell IIN ('apoptosis') AND nove # rstd Ch. 2 3 4 5 6 7 8	Functional I eletrue AND vo 1 1509 1 1753 1 1758 1 1777 1 1778 1 1778 1 1778 1 1812 1 1812 1 1813	npact v ssmpl = 301 448 ACC 448 ACC 448 A 418 T 418 T 461 T 465 CAA 337 T	4 Alt. AC C A AT C C C C C C C C C	Gene \$\$U72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1	Gene region Intron Intron Intron Intron Intron Intron Intron			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66 26	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED	Clear
♥ Location ♥ Gene Region ps.cell IN ('apoptosis') AND nove # rsld Ch. 1 2 3 4 5 6 7 8 9 9	✓ Functional I el=true AND v.c. Locatio 1 1509 1 1753 1 1758 1 1777 1 1778 1 1786 1 1813 1 2175 1 2175 1 2175	smpl = 301 smpl = 301 448 ACC 448 ACC 448 A 448 A 44	4 Alt. AC C A AT C C C C C C C C C G	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SKI	Gene region Intron Intron Intron Intron Intron Intron Intron Intron			SIFIScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66 2.6 5.46	Read Depth a	Filter 2 MISSED 3 MISSED 2 MISSED 3 MISSED 2 MISSED 4 MISSED 2 MISSED 2 MISSED 3 MISSED 4 MISSED 5 MISSED	Clear
V Location Gene Region ps.cell IN ('apoptosis') AND now # rsld Ch. 1 2 3 4 5 6 7 8 9 10	Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Image: Image: Second state Image: Second state Image: Image: Image: Image: Image: Second state Image: Second state Image:	npact smpl = 301 ref 448 ACC 56 T 77 G 448 A 148 A 148 T 149 A 149 A	4 Ait. AC C A AT C C C C C G G G G	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SKI SKI SKI	Gene region Intron Intron Intron Intron Intron Intron Intron Intron			SIFIScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66 2.6 2.6 5.46 1.7.1	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED	Clear
✓ Location ✓ Gene Region ps.cell IIN ('apoptosis') AND nove * rstd Ch. 1 2 3 4 5 6 7 8 9 10 10 11	Image: Second	mpact ▼ smpl = 301 met smpl = 301 met states states	4 Ait. AC C A AT C C C C C G G G G	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SKI SKI SKI	Gene region Intron Intron Intron Intron Intron Intron Intron Intron Intron			SIFIScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66 2.6 5.46 5.46 17.1 6.02	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED	Clear
✓ Location ✓ Gene Region ps.cell IN ('apoptosis') AND nove # rsld Ch. 1 2 3 6 6 7 8 9 10 10 11 12 12 12	Lettrue AND vc Lettrue AND vc 1 1509 1 1758 1 1758 1 1777 1 1777 1 1777 1 1777 1 1776 1 1813 1 2175 1 2226 1 2244 1 3382	smpl = 303 smpl = 303 4 ref 448 ACC 556 T 77 G 448 A 18 T 661 T 165 CAA 37 T 09 A 889 A 889 A 554 T 17778 TTTTTT.	Ait. Ait. AC C A AT C C C C C C G G G G	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SKI SKI SKI	Gene region Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron SUTR			SIFTScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.31 6.02 3.66 2.6 2.6 5.46 17.1 6.02 9.9	Read Depth a	Filter 2 MISSED 3 MISSED 2 MISSED 3 MISSED 2 MISSED 2 MISSED 2 MISSED 3 MISSED 2 MISSED 3 MISSED 2 MISSED 3 MISSED	Clear
✓ Location ✓ Gene Region ps.cell IN ('apoptosis') AND nove # rsld Ch. 1 2 3 4 5 6 7 6 7 8 9 10 11 12 13	Punctional I eletrue AND voc Locatio 1 1595 1 1775 1 1778 1 1776 1 1776 1 1777 1 1777 1 1777 1 1777 1 1777 1 1777 1 2175 1 2275 1 2226 1 2284 1 3397	smpl = 303 smpl = 303 4 ref 448 ACC 556 T 77 G 448 A 717 G 448 A 717 G 448 A 717 G 448 A 717 G 448 A 717 G 448 A 71 G 71 G 71 G 71 G 71 G 71 G 71 G 71 G	A AR. AC C A A AT C C C C C C G G G G G G G	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SKI SKI SKI SKI ARHGEF16	Gene region Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron			SIFIScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 3.66 6.02 9.9 9.3 3.66 2.6 2.6 5.46 1.1.1 6.02 9.9 9.3 3.66	Read Depth a	Filter 2 MISSED 3 MISSED 2 MISSED 2 MISSED 3 MISSED	Clear
✓ Location ✓ Gene Region ps.cell IIN ('apoptosis') AND nov. # rstd Ch. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 14	✓ Functional I el=true AND v.c. Locatio 1 1509 1 1753 1 1773 1 1778 1 1778 1 1778 1 1778 1 1778 1 1781 1 1813 1 2175 1 2241 1 2241 1 3382 1 3784	mpact ▼ csmul = 301 ref 448 ACC 556 T 777 G 448 A 611 T 655 CAA 337 T 609 A 854 T 754 TTTTT. 600 GG 611 T	Ait. AC C A AT C C C C C C C C C G G G G TTTT G TCTC	Gene SSU72 GNB1 GNB1 GNB1 GNB1 GNB1 GNB1 SK1 SK1 SK1 SK1 SK1 SK1 ARHGEF16 ARHGEF16	Gene region Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron Intron			SIFIScore	PolyPhen2 Sc	Allele Freque	apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis apoptosis	Quality 366 602 99 933 6002 366 26 546 46 117.1 602 99 93 3666 1138	Read Depth a	Filter MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED MISSED	Clear

And they should also be deleterious mutants: Functional Impact

Functional Impact			×
Translational Impact:	Missense Nonsense	Splice disrupt Misstart	CDS indel Non stop
SIFT Prediction:	Tolerated(>0.05)	Damaging(<=0.05)	
PolyPhen2 Prediction:	Benign(<=0.452)	Possibly Damaging	Probably Damaging(>=0.957)
	Least conserved		Most conserved
GERP++ Conservation:	-12.3		6.17
Reset			Ok Cancel

Copy these genes over into Pathway Studio:

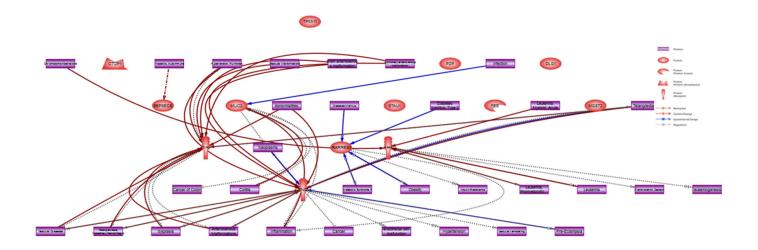
at	hw	vay Stu	ıdio					Basic search	for proteins, d	iseases, pathwa	ys, etc	Q Advan				Help 🔻 🛛 🤇	Chris Chea
St	tart	Group	_C/83/to	op ×													
Lo	ocatio	on 🖓 Gen	e Regio	n 🍸 Func	tional	Impact	Trequency	Confiden	ce 🔻 Biologi	cal Associations	□ □ □ Databas	e Identifiers		۲	Export	Copy Genes 🔹	Clear Sele
os.ce	ell IN	l ('apoptosis) AND r	novel=true	AND g	enotype	IN ('Homozyge	ous') AND tran	Imp IN ('misser	se','splice-disru	pt','nonsense','	misstart','nonst	op') AND poly	ph2s>=0.957 ANI	D vcf.smp	Copy Selecte Copy First 1.0	
#		rsId	С	Locat	ref	Alt.	Gene	Gene region	Transl. Impact	GERP++	SIFTScore	PolyPhen	Allele Fre	Cell processes	Quality	кеац рер	ritter
	1		2	751092	А	т	HK2	CDS	missense	5.01	0.054	0.992		apoptosis	9.31	2	MISSED
	2		3	196876	Т	С	DLG1	CDS	missense	5.74	0.004	0.985		apoptosis	6.02	2	MISSED
	3		4	251606	С	А	SEPSECS	CDS	missense	5.71	0	1		apoptosis	9.31	2	MISSED
	4		4	140640	G	А	MGST2;MA	CDS, Intron	missense	4.06	0.001	1		apoptosis	6.02	3	MISSED
	5		6	161012	G	Т	LPA	CDS	missense	-3.93	0.277	0.977		apoptosis	9.31	2	MISSED
	6		7	150037	G	С	RARRES2	CDS	missense	5.32	0	0.996		apoptosis	6.02	2	MISSED
	7		9	130578	т	G	ENG	CDS, Intron	missense	5.44	0.049	1		apoptosis	6.02	2	MISSED
	8		11	1079715	с	Α	MUC2	CDS	missense	2.91	0.002	1		apoptosis	9.31	2	MISSED
	9		11	449591	С	Α	TP53I11	CDS	missense	3.95	0	1		apoptosis	9.31	2	MISSED
	10		12	9321519	A	G	PZP	CDS	missense	1.4	0	1		apoptosis	6.02	2	MISSED
	11		12	523062	т	С	ACVRL1	CDS	missense	4.15	0	0.988		apoptosis	6.02	2	MISSED
	12		15	914333	т	С	FES	CDS	missense	4.8	0.009	0.992		apoptosis	6.79	2	MISSED
	13		17	385046	Т	С	RARA	CDS, Intron	missense	5.45	0.001	1		apoptosis	6.02	2	MISSED
	14		18	774559	G	С	CTDP1	CDS	missense	4.55	0.029	1		apoptosis	9.31	2	MISSED
13	15		20	477337	Т	С	STAU1	CDS	missense	5.96	0.002	0.976		apoptosis	6.02	2	MISSED


Create a New Pathway and paste in the filtered VCF genes:

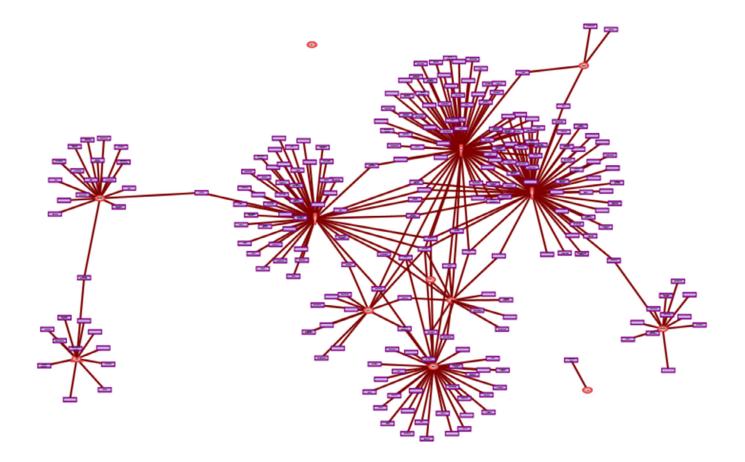
Search on the term "apoptosis."

Add Relations between Selected (apoptosis) and Unselected (VCF genes).

What information is known about the association of each of these proteins with apoptosis? (Hint:


Select apoptosis and add Relations between Selected and Unselected.)

Relation	Object Type	Effect T	# of Reference
→ STAU1+> apoptosis	Regulation	positive	1
→ RARA+> apoptosis	Regulation	positive	51
→ ACVRL1+> apoptosis	Regulation	positive	1
→ SEPSECS+> apoptosis	Regulation	positive	1
→ MGST2+> apoptosis	Regulation	positive	1
→ RARRES2+> apoptosis	Regulation	positive	7
→ ENG+> apoptosis	Regulation	positive	1
→ RARA apoptosis	Regulation	negative	1
→ ENG apoptosis	Regulation	negative	23
→ CTDP1 apoptosis	Regulation	negative	1
→ PZP> apoptosis	Regulation		1
→ DLG1> apoptosis	Regulation		3
→ FES> apoptosis	Regulation		2
→ RARA> apoptosis	Regulation		1
→ TP53I11> apoptosis	Regulation		7
→ CTDP1> apoptosis	Regulation		2
→ MUC2> apoptosis	Regulation		2


5.3 Exploring the Biology of Apoptosis-related Genes

What are other cellular processes associated with these proteins? (Hint: Select all proteins; add "Network Builder," "Advanced Expand Pathway Tool," and "Cell Process with Regulation"(?); and filter for 10 references or more.)

Have mutations in any of these proteins been implicated in any diseases?

(HINT: Select all proteins; add "Network Builder," "Advanced Expand Pathway Tool," Disease with "GeneticChange," and ChangeType=Mutation; and set "Layout" to "Direct Force.")

5.4 Variant Analysis of Multiple Genomes

Upload multiple exome sequence files from NCBI's Geo site (GSE52194).

The study includes exome data from three breast cancer groups. You will use the HER2 positive breast group, and normal breast tissue (NBS) is included as a control.

SRA	SRP032789			
BioProject	PRJNA227137			
Relations	63M1201018 110C3			
	GSM1261017 TNBC2 GSM1261018 TNBC3			
Samples (20) ≝ More	GSM1261017 TNBC2			
	GSM1261016 TNBC1		apiens,	
Platforms (1)	GPL11154 Illumina HiSeq 20	00 (Homo s	sapiens)	
Country	USA			
ZIP/Postal code	20037			
State/province	DC			
City	Washington			
Department Street address	Biochemistry and Molecular M 2300 Eve Street NW	ledicine		
Organization nam				
Phone	202-994-2114			
E-mail	horvatha@gwu.edu			
	Anelia Horvath			

Raw data provided as supplementary file Processed data provided as supplementary file

		GSE52194_RAW.tar		Help 🔻 Chris Cheadle 🔻
	GSE32194_KAW.tar 38.8 MB — nih.gov — 8:50 AM		R <u>e</u> move Fr	rom History
			Open Cont	taining <u>F</u> older
				wnload Page
DOWNLOAD	-	GSE52194_RAW(1).tar		nload <u>L</u> ink
		Canceled — nih.gov — 8:40 AM	Cle <u>a</u> r List	
	Can	Cham All Davidas da		
		Show All Downloads		

Extract all files and move files containing the file extension _var.flt.vcf.gz into a new folder (which you will be able to find later!).

GSM1261028	HER2-1
GSM1261029	HER2-2
GSM1261030	HER2-3
GSM1261031	HER2-4
GSM1261032	HER2-5
GSM1261033	NBS1
GSM1261034	NBS2
GSM1261035	NBS3

5.5 Import Genotypes and Analyze Case versus Controls

Import Genotypes.

Projects	I	mport				
Curated Pathwa	iys	Experiment	• Entity List		Genotypes	
Ontologies		Experiment Import gene expression, proteomics, or metabolomics experiments for analysis.	Import a list of genes/pro molecules, functional class			within Pathway
PS Database Co	ontent	Import Experiment	types to find relevant path and networks based on the		Import Genoopes	
Variation Datab	ase		list. Import Entity List	PATHWAY STUDIO Statt Smoot Genetypes 1	a a constantina de la constant	ch for proteins, diseases, pethways, etcQ
				(#) Start New Import		
Import				File Name	Saha	Adiana
+ Create					Import wized	
					Step 2. Select filebb. Load from Computer Load from URL	
Analyze					Browse	
				Ċ.		
	TATHWAY ST	rudio°	Basic search for proteins, diseases, pathway	6		Size (H3) Action (17), vie /R.ed. qc, 11.47
	PATHWAY ST Start Import Genoty		Basic search for proteins, diseases, pathway		GGML20028_121_sex.ff.ed From GGM20028_202 GGML20028_2028_sex.ff.ed From GGM20028 GGML20028_36_sex.ff.ed From GGM20028	(J12, var Revif og, 11.47 3410 Cancel (JP2-53, var Revif og, 11.4 612 Cancel (JR, var Revif og, 11.47/ 3526 Cancel
			Basic search for proteins, diseases, pathway		GSML30128, J21, yao JR wit Prom GSML30128, GSML30122, JPD 33, yao JR wit Prom GSML30128, GSML30128, JS, yao JR, with with Prom GSML30128,	(17), we fixed go; 11.67
	Start Import Genoty Start New Import	ypes ×	Basic search for proteins, diseases, pathway		6047,20138,37,3,50 Prior 6546,20138 6047,20138,37,51,50 Prior 6646,20138 6047,20138,37,51,50 Prior 6646,20138 6047,20138,37,51,50 Prior 6646,20138 6047,20138,37,51,50 Prior 6646,20138 6047,20138,37,51,50 Prior 6546,20138 6047,20138,37,51,50 Prior 6546,20138 6047,20138,37,50 Prior 6546,20138 6047,20138,37,50 Prior 6546,20138 6047,20138,37,50 Prior 6546,20138 6047,20138,37,50 Prior 6546,20138	L113, are Rivel qq, 1147
	Start Import Genoty	opes ×			GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(11), wr.Red. q; 11.07. 200 Canad (P0.1), wr.Red. q; 11.07. 35.0 Canad (P0.1), wr.Red. q; 11.07. 35.0 Canad (Nam.Red. q; 11.07. 2012 Canad (Nam.Red. q; 11.07. 30.0 Canad (NMS), wr.Red. q; 11.07. 10.0 Canad (Nam.Red. q; 11.07. 10.0 Canad (Nam.Red. q; 11.07. 10.0 Canad (NMS2, wr.Red. q; 11.17. 20.0 Canad (NMS2, wr.Red. q; 11.17. 20.0 Canad
	Start Import Genoty Start New Import	closed while files are processing.	Adions		GMA33133_111_wR Nuf Feas GGA3313 GMA3132_F51_WR Nuf Feas GGA3313 GMA3132_F51_WR Nuf Feas GGA3313 GMA3133_NUf WR Nuf GMA3133_NUf Feas GGA3313 GMA3133_NUf WR Nuf	111, ин Льней да, 1147. В 810 Санося 1973 В.; ин Линей да, 1147. В 12 Санося (А, ин Линей да, 1147. В 558 Санося (А, ин Линей да, 1147. 252 Санося) (А, ин Линей да, 1147. 252 Санося) (А, ин Линей да, 1147. 256 Санося) (А, ин Линей да, 1147. 266 Санося)
	Start Import Genoty Start New Import Pathway Studio can be File Name	closed while files are processing. fit.vd Processing file			GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(11), wr.Red. q; 11.07. 200 Canad (P0.1), wr.Red. q; 11.07. 35.0 Canad (P0.1), wr.Red. q; 11.07. 35.0 Canad (Nam.Red. q; 11.07. 2012 Canad (Nam.Red. q; 11.07. 30.0 Canad (NMS), wr.Red. q; 11.07. 10.0 Canad (Nam.Red. q; 11.07. 10.0 Canad (Nam.Red. q; 11.07. 10.0 Canad (NMS2, wr.Red. q; 11.17. 20.0 Canad (NMS2, wr.Red. q; 11.17. 20.0 Canad
	Start Start Start Mew Import Genoty Control C	closed while files are processing. closed while files are processing. Status	Actions Cancel		GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(17), setter dg, 1147 2019 (2000) (2912), setter dg, 111 2012 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 201
	Start Import Genoty Start New Import Pathway Studio can be File Name GSM1261035_N853_var.	closed while files are processing. closed while files are processing. fit.vd Processing file fit.vd Processing file fit.vd Processing file	Actions Cancel Cancel		GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(17), setter dg, 1147 2019 (2000) (2912), setter dg, 111 2012 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 201
	Start Import Genoty Start New Import Pathway Studio can be File Name GSM1261035_NB53_var3 GSM1261034_NB52_var3 GSM1261033_NB51_var3	closed while files are processing. closed while files are processing. fit.vd fit.vd Processing file fit.vd Processing file fit.vd Processing file fit.vd Processing file	Actions Cancel Cancel Cancel		GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(17), setter dg, 1147 2019 (2000) (2912), setter dg, 111 2012 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 201
	Start Import Genoty Start New Import Pathway Studio can be o File Name GSM1261035,NB53,var.1 GSM1261034,NB52,var.1 GSM1261033,NB51,var.1 GSM1261032,JP2-53,var.1	closed while files are processing. closed while files are processing. fit.vd f	Actions Cancel Cancel Cancel Cancel		GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(17), setter dg, 1147 2019 (2000) (2912), setter dg, 111 2012 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 201
-	Start & Import Genoty Start New Import Pathway Studio can be File Name GSM1261035,NB53,var.i GSM1261034,NB52,var.i GSM1261034,NB52,var.i GSM1261031,NB51,var.i	ypes × closed while files are processing. fit.vd Processing file fit.vd Processing file fit.vd Processing file fit.vd Processing file Svd Processing file Svd Processing file	Actions Cancel Cancel Cancel Cancel Cancel		GMA33133_111_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_F513_wR R.wf Fram GMA33131 GMA33132_MR R.wf R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA33131_MR1_wR R.wf Fram GMA33131 GMA3313_MR1_wR R.wf Fram GMA33134	(17), setter dg, 1147 2019 (2000) (2912), setter dg, 111 2012 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2013 (2000) (2000), 2000, 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 2014 (2000) (2000), 2014 (2000), 201

Add samples.

PATHWAY STUD	IO [®]		THWAY STUDIO®	Built starch for potnice	dooren, pelhonys, thus
• Start in Import Genotypes ×			📩 Import Genutypes 🗵 🖃 Multiple Genuty, 🗵		
Start import Genotypes ~			intop New Analysis Anno News	Mercage Address	
-			(
Projects	Analyze		Setup New Analysis Analysis name Text		*
			Ceve samples	GRate Control samples (sptional)	Clean I
Curated Pathways	Multiple Genotypes		C New	C Nate	Careful (Merson)
	Select multiple genotypes to analyze and		No samples in proup.		
Ontologies	Select multiple genotypes to analyze and	3			
_	compare within Pathway Studio.				
PS Database Content	Start Analysis				
Variation Database					
Variation Database			Select All [Unselect All]	Remove Select All Diselect All	× famous
			City include variants satisfying all of the followin		Afamous
*				ove at least 4.9.20 Quality Filter 🔃 FASS	
Import					Cancel
+ Create					Carte
Create					
Analyze	Setup Nev	v Analysis			×
How Do L	Analysis	name test			
How Do L.	Case sam	iples: 🕞 Add Samp	les Paste Control sa	mples (optional): 🔒 Add Samples	Paste
	Nam		Name		
	Grou	up_C/171/tophat_out/171_accepted_hit	s.bam NBT3	/tophat_out/accepted_hits.bam	
	C Gro	up_C/26/tophat_out/26_accepted_hits.b	NBT1	/tophat_out/accepted_hits.bam	
	C Gro	up_C/S6/tophat_out/S6_accepted_hits.b	Nam NBT2	/tophat_out/accepted_hits.bam	
	Cro	up_C/83/tophat_out/83_accepted_hits.b			
	C Gro	up_C/0P2-53/tophat_out/0P2-53_accepti	ed_hits.bam		
			<<		
			1880		
			(
	Selec	t All Unselect All	× Remove Select	All Unselect All	× Remove
	- Only in	nclude variants satisfying all of the fol	llowing criteria		
	Read D	Depth at least e.g. 10 Qua	lity Score at least e.g. 20	Quality Filter 🔝 PASS	
				OK	Cancel
				UK J	Carter

Turn the Crank!

Setup New Analysis			
Analysis Name	Status	Message	Actions
🖹 test	Preparing samples 95%		Cancel

Output!

[PA]	THWAY ST	rudio°					Basic search for pr	oteins, diseases, pathwa	ys, etc Q Ac	dvanced			Help	 Chris Chea
Start	📩 Import Genot	ypes 🛛 🛗 Mul	tiple Genot >	🕘 te	st ×									
7 Locati	on 🛛 🖓 Gene Regio	n V Function	l Impact 🖓	requent	y V Biok	ogical Associations 🛛 🖓	Database Identifier	5					🕏 Export 🛛 Copy G	enes • Clear Sele
multi.sm	npl = 555606													c
	rsld	Chro	Location	ref	Alt.	Gene	Gene region	Transi. Impact	GERP++ Score	SIFTScore	PolyPhen2 Score	Allele Frequency	Cases • • • ?	Controls • •
1	L	1	14522	G	A	WASH7P	3UTR						0.000	0.1.0.0
] ;	2 1962635297	1	14653	C	т	WASH7P	3UTR						0000	1-2-0-0
] 3	3	1	14930	A	c	WASH7P	Intron						0000	0.1.0.0
1	4	1	18027	с	т	WASH7P	3UTR		21				0000	0.1.0-0
] :	5	1	18030	с	т	WASH7P	3UTR		sound and				0000	0-1-0-0
1	5	1	18368	T	c	WASH7P	Intron		Stor Por		7		0000	0-2-0-0
];	7 rs452623	1	24832	A	G	WASH7P	3UTR		2 0/21	V I	1		0000	0.2.0.0
) 8	8 rs62642130	1	135040	T	c	LOC729737;HYDIN2	3UTR		G JULY	192			0000	0.1.0.0
1	9	1	136052	T	c	LOC729737;HYDIN2	3UTR		72				0000	0.1.0.0
10	0	1	136218	T	c	LOC729737;HYDIN2	3UTR			00	1		0000	0.1.0.0
11	1	1	136475	T	c	LOC729737;HYDIN2	3UTR		AT				0000	0-1-0-0
12	2	1	136488	T	c	LOC729737;HYDIN2	3UTR		SSV	= E			0000	0-1-0-0
13	3	1	136622	T	c	LOC729737;HYDIN2	3UTR		W -				0000	0-3-0-0
14	4	1	136768	T	c	LOC729737;HYDIN2	3UTR						0000	1-2-0-0
1	C ++373687700		136063	e		10/7730737-60/0802	31 /70						0000	0.200

Now, we can start some data analysis!

Find homozygous variants that are present in at least three of the case samples. However, these variants cannot be in any of the control samples that are also in the coding region and are known to be associated with breast cancer.

In the Frequency filter, select for homozygous mutations that are present in at least three case samples (greater than 2) and not present in the control samples (less than 1).

Frequency		×
Is Novel	(not in dbSNP)	
Minor Allele	frequency: > 💌	in 1000 Genomes Project
Case samp	bles	Control samples
Variants:	 Homozygous Heterozygous Hemizygous Ambiguous 	Variants: 🕑 Homozygous Heterozygous Hemizygous Ambiguous
Found in:	more than 💌 2 samples	Found in: less than 💌 1 samples
Reset		Ok Cancel

Gene Region	×
Coding	Intronic
3'UTR	Intergenic
S'UTR	
Reset	Ok Cancel

In the Gene Region filter, select for coding mutations.

5.6 Investigate the Biological Functions for Selected Genes

In the Biological Associations filter, select Disease Association>Breast Cancer.

Biological Associations								×			
T Disease Association	V Cel	Process /	Association	V Drug Assoc	iation						
Search				Added Filtes							
breast cancer			Q	Breast Cancer			remove				
basal like breast cancer			<u>^</u>								
Breast Cancer											
breast metastasis											
Carcinoma, Ductal, Breas	t										
Carcinoma, Intraductal, N	loninfiltrat	ting									
Carcinoma, Lobular											
estrogen receptor positiv	e breast c	ancer									
Hereditary breast cancer											
in situ breast cancer											
Inflammatory Breast Neo	plasms		*								
Add All				Remove All							
Reset All					Apr	oly Filters	Canc	el			
					(inter					7	
			le Genot × 📄 test ×		For proteins, diseases, pathways, r	etc. Q Advanc	ed			Help * Chris C	Cheadle
				Biological Associations V Database I AND inset>2 AND inset.control<1 AND re		(Breast Cancer) AND mult	Longl - 555606		Caport	Copy Genes • Clear	Clear
9	 rsld rs2501280 	C Location	ef AR. Gene G A PEPG2		Transi. Im		Allele Fre	19 Breast Cancer	Canes - - - ? 3000	Controls - -	
8	2 rt1805415 3 rt1929660	1 234570840	C PARPS	CDS	1.19 miccence 4.18		0.21	07 Breast Cancer 02 Breast Cancer	3000	0300	
	4 rs1120436 5 rs769242	2 29001491 4 122742217	A G PPPSCB	CDS	0.0036		0.49	54 Breast Carson 13 Breast Cancer	3-1-0-0 3-0-0	0-3-0-0	
	6 rs2244029 7 rs162050	5 311478 5 7866967	C POCOS, AMR	R CDS, Intron	-10.4		0.39	44 Breast Cancer 95 Breast Cancer	3100	0200	-
	8 rs706679	5 65317181 6 32549475	C T EREAR	005	0.614 missense 2.02			79 Breast Cancer Breast Cancer	3000	0200	
	10 rk3750164	7 47323436	A G TNS3	CD5	-3.32		0.29	79 Breast Cancer	3000	0100	
	11 rt1534136 12 rt849389 13 rt849399	7 47439974 7 106509978 7 106509987	A G PROCG	CD5 CD5	-241		0.06	44 Breast Cancer 05 Breast Cancer 91 Breast Cancer	3000	0400	
	24	8 48905816	NG AGG PREDC	CDS	5.82			91 Breast Cancer Breast Cancer 28 Breast Cancer	3000	0-0-0-0	
	15 rs1042058 16 rs10761725 17 rs7050615	10 30728101 10 64974537	A T MADEC	CD5 CD5	4.63 #/114714 3.34	0.009	0.336 0.48	56 Breast Cancer	3-2-0-0	0200	
	18 (111)0663	11 037502	6 A CD151	005	-3.01	0.446	0.35	17 Breast Cancer 78 Breast Cancer	4000	0200	
	19 +s11555762 20 +s664226	11 43876690 11 64789194	C ARLZARLZ	ADG 5 CDS, Intree	existence 0.382	0.718	0 0.45	59 Breast Cancer 77 Breast Cancer	3000	0100	
	21 rs4621	11 45623519	G A CFLS	CDS	0.834		0.42	79 Breast Cancer	3100	0000	-

Note: In the Case and Control columns, insert the number of times a specific variant was identified is represented by four numbers in this order:

- homozygous
- heterozygous
- hemizygous
- ambiguous

Cases • • • ?	Controls · · · ?
3.0.0.0	0.0.0.0
3.0.0.0	0.3.0.0
3.0.0.0	0.2.0.0
3.1.0.0	0.3.0.0
3.0.0.0	0.0.0.0
3.1.0.0	0.2.0.0
3.0.0.0	0.0.0.0
3.0.0.0	0.2.0.0
3.0.0.0	0.0.0.0
3.0.0.0	0.1.0.0

Copy the remaining genes after filtering into Pathway Studio:

From this point, the list can be further investigated using the tools in Pathway Studio to answers questions such as:

- What information is known about the association of each of these proteins with breast cancer?
- What other cellular processes or diseases are associated with these proteins?
- Have mutations in any of these proteins been implicated in any other diseases?
- Are any of these proteins included in Elsevier's curated pathways?
- What proteins do these proteins regulate that a mutation might impact that regulation?

Finish up by performing a Sub-Network Enrichment Analysis (SNEA) on this group of genes/proteins for disease association.

Enrichment Analysis of Select	ed Entities		×			
Input Objects:	CDC42BPA, PPP1CB, NES, CSF1, GM2A, ADAR, NDUFAF4, PADI2, HIVEP2, HJURP, POLQ, APC, FGFR4, PDCD6, MAST2, HLA-DRB1, RAPH1, CR1, PARP1, SENP2, PGD, ACVR1, LRBA,	•				
Analysis Type:	Find Sub-Networks Enriched with Selected Entities	•			8	-
p-value ≤	0.05			10 P-CE	T	
Min Overlap:	1					
	Include only overlapping entities in Pathways					-
Max Networks:						(A.00)
Neighbors:	© Expression Targets			2.0 4		P60
	miRNA Targets					
	Chemical Expression Targets					8,191
	Binding Partners					
	Protein Modification Targets		04		anter a	
	Disease Biomarkers (Quantity)					-
	Disease Biomarkers (Mutations)					
	Proteins/Chemicals Regulating Diseases			_		
	Proteins/Chemicals Regulating Cell Processes			• •	0.0	12
	Custom Select types					(-3
			_			
	Find	Cancel				

Sub-networks e ×								
🔚 Save 🔹 🛄 Select 🔹 🕼 Edit 🔹 🐨 Export 👻 😳 Tools 🔹								
Name	Total # of Neighbors	Gene Set Seed	Overlap	Percent Overlap	Overlapping Entities	p-value		
🔲 🛃 Proteins/Chemicals	9966	cancer	21	0	CDC42BPA, PARP1, P	2.51460E-8		
🔲 🛐 Proteins/Chemicals	4194	hepatocellular carcinoma	13	0	PARP1, CSF1, ACVR1,	7.63491E-7		
📃 🛐 Proteins/Chemicals	5002	breast cancer	14	0	PARP1, CSF1, NES, SE	8.21035E-7		
Proteins/Chemicals	2963	melanoma	11	0	PARP1, MAP3K1, APC,	1.26872E-6		

We can see that the top 4 enriched diseases for the Breast Cancer DNA variants involve mutations in genes previously associated with cancer including, specifically, breast cancer.

But wait, before we go let's do a quick review of what we learned today.

- We learned how to identify, download, and analyze variant data.
- We learned how to identify genes known to be associated with apoptosis damaging variants using a single sample data set.
- We learned how to identify damaging variants in a case versus control multiple sample data set.
- We performed multiple drills for investigating biological functions for our network of selected genes.
- All in all, not a bad day's work!

And now we're done, see you next time!

Study Questions 5

- For the single exome data used in this module (GSM1261041_83), identify the number of variants that are novel? (Hint: Suggested by the data, but not in the dbSNP database.) Identify the number of variants that are related to cell cycle.
- 2. After filtering for homozygous variants, how many SNPs are left?
- 3. After filtering for Functional Impact (as in Module 5), how many SNPs are left? How many genes are left?
- 4. Using the multiple exome data in Module 5, how many homozygous variants are present in at least three of the case samples but not in any of the control samples?
 - a. After filtering for Coding Region only?
 - b. After filtering for "cell proliferation" under Biological Associations?
- 5. Which gene(s) have variant SNPs for all five breast cancer patients and none in controls? (Hint: Export table to Excel for faster inspection.)
- 6. How many references connect these genes with cell proliferation?

ELSEVIER For Relations Localized in a Tissue/ Organ/Cell Type/Cell Line, How Do I...

Exercise 5.1: Find relations that are known to be found in a specific organ?

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein" Relations: Select your specific interest

Add condition: Organ "is equal to" your specific interest

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Alternatively: After pathway is built, in the Relation Table View, add column for "organ."

Exercise 5.2: Find relations that are known to be found in a specific tissue?

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein" Relations: Select your specific interest

Add condition: Tissue "is equal to" your specific interest

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Alternatively: After pathway is built, in the Relation Table View, add column for "tissue."

Exercise 5.3: Find relations that are known to be found in a specific cell type?

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein" Relations: Select your specific interest

Add condition: CellType "is equal to" your specific interest

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Alternatively: After pathway is built, in the Relation Table View, add column for "celltype."

Exercise 5.4: Find relations that are known to be found in a specific cell line name?

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein" Relations: Select your specific interest

Add condition: CellLinename "is equal to" your specific interest

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Alternatively: After pathway is built, in the Relation Table View, add column for "CellLineName."

Module 6

Gene Expression Data Analysis

Contents

6.1	Introduction	95
6.2	Filter Probes by Value	97
	Explore Enriched Pathways	
6.4	What exactly is SNEA doing, anyway?	100
6.5	Small Molecule Inhibitors of Diseases and Genes	102
6.6	Small Molecules in Clinical Trials	107

Study Questions 6

0
1
1
:

6.1 Import Pre-eclampsia Experimental Data RNA Data Analysis

Data Import*

- Microarray
- RNASeq
- Semi-automatic versus manual

*Data Import protocols from GEO, from tab-delimited files, full data sets and differential calculations only are available in Appendices 1.A through 1.C.

Data Analysis

- Experiment Summary Analysis
- Sub-Network Enrichment Analysis
 (SNEA) (unique to Pathway Studio)

Pre-eclampsia or preeclampsia (PE) is a disorder of pregnancy characterized by high blood pressure and a large amount of protein in the urine. The disorder usually occurs in the third trimester of pregnancy and gets worse over time. In severe disease there may be red blood cell breakdown, a low blood platelet count, impaired liver function, kidney dysfunction, swelling, shortness of breath due to fluid in the lungs, or visual disturbances. Preeclampsia increases the risk of poor outcomes for both the mother and the baby. If left untreated, it may result in seizures at which point it is known as eclampsia.

Data Analysis: Pre-eclampsia example.

Note: Data is derived from GEO data set, GSE10588 "Placental gene expression in severe preeclampsia." (please note that the platform used for this microarray study is the now discontinued ABI Human Genome Survey Microarray Version 2, preventing direct import from GEO. A properly mapped data file ready for import into Pathway Studio is available from Dropbox (<u>GSE10588_Pre-eclampsia_dataset_10-07-16</u>).

First Step: Import your data (Hint: Make sure during the import you indicate that the data sample type = "Log-intensity.")

PATHWAY STU			00	se search for prote	eins, diseases, path	ways, etc	Q Advanced				Help ▼ ch	nris cheadle
Start	🗃 test ×											
Projects	Link View •	TFilter • 🔲 Select	• 🛍 Edit • 🔮 E	xport 🔹 🕥 Tools	•							
Curated Pathways	Name	severe preeda	severe preeda	normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	normal la
	Class: phenoty	pe		normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	normal labor	norma
Ontologies	not mapped	-0.090906136	6.25636E-1	10.946663	12.9563265	11.3242855	10.671577	11.190412	12.491434	11.411676	12.273251	11.6
	not mapped	0.40425172	2.04219E-2	13.161721	12.458668	13.592169	12.803858	13.339435	13.046422	13.263659	13.087175	13.1
PS Database Content	not mapped	-0.21632053	1.81526E-1	11.473285	10.690669	11.714407	10.826733	11.14252	10.687013	12.962169	11.069572	10.9
Curated Pathways Curated Pathways Curated Pathways PS Database Content Variation Database Import Create	not mapped	-0.570199	2.43430E-2	8.719287	7.745208	7.801434	8.158518	8.750006	8.653079	7.2056756	7.8176365	7.:
	not mapped	-0.13185103	4.54747E-1	6.1519647	8.169349	6.506283	6.6466346	7.521311	6.7049875	7.4839444	7.5850077	7.
	A1BG	-0.43642026	8.38115E-2	10.213638	9.910168	11.571222	9.044402	10.427988	8.315316	8.285639	9.347311	9.
·	A1CF	-0.015946621	9.34029E-1	6.283749	7.3102226	6.558571	6.687	6.8610177	6.8247113	8.001462	7.1102033	7
-	not mapped	-0.22703584	1.67802E-1	16.833708	16.35719	16.769588	16.493834	16.552418	16.74184	15.641861	16.61676	15.
+ course	A2ML1	-0.32025558	2.84466E-1	9.456468	8.219589	7.5720496	7.4332666	8.669591	7.8805203	9.194086	8.560905	9.
_	A4GALT	0.29346478	3.81951E-1	8.4883585	10.627885	10.128359	9.988799	8.766704	11.43053	11.268015	8.665262	9.
Analyze	A4GNT	-0.011277996	9.63151E-1	8.257139	7.7600083	8.484251	7.7931423	7.575182	8.016315	8.016113	8.569129	8.
	. AAAS	0.3446741	1.61268E-2	11.125651	10.972879	11.058759	11.550064	11.431647	10.41597	10.571655	9.862727	1
P How Do I	AACS	0.034448788	8.48345E-1	12.081114	13.104858	13.289062	12.293866	12.49833	13.051502	14.6898365	13.414466	12.
100 00 1	AADAC	-0.4237545	8.69273E-2	7.5084124	9.383843	7.623692	9.001703	7.690038	7.6481423	7.6512947	8.7948675	7
	AADAT	0.13596117	6.07231E-1	9.324383	9.998776	9.7775345	9.395835	9.109163	9.620069	10.0529	9.949921	
	AAGAB	0.0947927	3.83031E-1	12.172579	12.480167	11.8741255	12.618112	11.207535	12.291433	12.840199	12.271502	12
	AAMDC	-0.4814593	1.86957E-2	11.141292	11.350713	11.549093	10.95074	11.233045	10.821859	11.076889	12.150328	10
Curated Pathways Curated Pathways Curated Pathways PS Database Content Variation Database Import Create Analyze	AAMP	-0.26025128	2.48910E-2	13.417141	13.476308	13.002166	13.60981	13.549315	13.399487	13.32238	13.649675	13.8
	AANAT	0.6233827	1.77532E-5	10.279156	10.311119	11.174402	10.148765	10.080838	9.916978	10.586486	10.291827	10
	AAR2	-0.07513567	4.50247E-1	11.767436	12.323605	12.693212	11.712464	12.048004	12.43824	12.397682	12.55501	11
	AARS	0.3354848	8.85044E-3	14.794555	15.328459	15.625069	14.960219	14.371257	15.379813	15.771604	15.46529	15.
	AARS2	0.0142504275	9.07058E-1	12.685581	13.730296	12.977311	12.521647	13.3123865	13.575469	13.541604	12.45778	12
	AARSD1	-0.41649935	3.37384E-2	12.5261135	13.014898	12.950625	12.467456	12.466625	12.490797	11.90861	12.794096	11
	AASDH	-0.14358869	2.48200E-1	11.295821	11.928272	11.929599	11.653629	11.459156	11.571408	11.783566	11.813828	11
	AASDH	-0.31993335	1.70293E-2	12.441397	12.374331	11.891526	12.659079	12.672146	12.448432	12.538882	12.7271	12
PS Database Content Variation Database Import Create Analyze	AASDHPPT	-0.003930545	9.81756E-1	12.7088175	11.960346	11.175664	12.314237	11.480851	12.224146	11.457026	11.13246	13
	AASS	0.25007477	2.74436E-1	8.05561	7.8033566	6.8733487	7.275127	7.538693	8.020493	7.06331	7.5595584	7.1
	AASS	0.08291284	7.81629E-1	9.860857	10.256054	10.000482	10.449368	10.148735	10.408858	9.598554	10.2575035	15
		4	111									

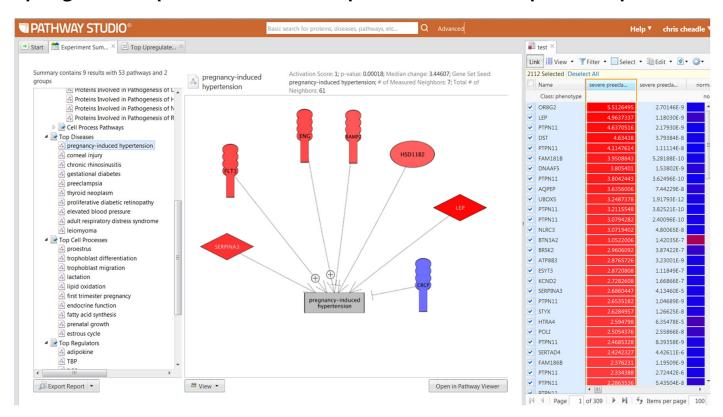
Next Step: View, hide Unmapped Probes, and sort by Fold Changes (Descending):

Start	👔 test ×												
Projects	Tink III View • 🍞 Filter • 🛄 Select • 🐚 Edit • 🕐 Export • 🕥 Tools •												
Curated Pathways	Name	severe preeda	severe preeda	normal labor	normal labo								
	Class: phenotype			normal labor	normal la								
Curated pathways Ontologies PS Database Content Variation Database Import Create Analyze Pow Do L.	OR8G2	5.5126495	2.70146E-9	8.154995	9.518034	9.787257	9.532206	9.271023	9.576126	8.869916	9.462691	8.958	
	LEP	4.9637337	1.18030E-9	11.452153	13.959136	14.050881	14.900314	11.07477	13.705315	12.205252	13.967893	15.09	
PS Database Content	PTPN11	4.6370516	2.17930E-9	7.0255337	7.110569	7.461923	6.793634	7.2754884	7.317063	6.7598934	7.431187	7.514	
2	DST	4.63438	3.79384E-8	7.7473106	7.533449	8.033581	7.5054893	7.036616	7.447074	7.847027	7.551244	8.000	
Variation Database	PTPN11	4.1147614	1.11114E-8	6.5299067	7.4331055	8.502884	7.926524	7.0825744	7.668859	7.306374	5.7677083	6.9944	
	FAM1818	3.9508843	5.28188E-10	7.995389	7.1835446	7.4020147	7.1546307	7.3405867	7.8805203	7.003855	8.357144	7.0866	
import [DNAAF5	3.805401	1.53802E-9	10.045729	10.63195	10.301953	9.7805395	10.087231	10.022801	9.965267	10.068757	10.149	
	PTPN11	3.8042443	3.62496E-10	6.8782024	7.68691	7.0078006	8.484086	7.3042	7.3360415	5.9767385	7.7036676	8.113	
+ Courts	AQPEP	3.6356006	7.44229E-8	10.246733	9.614994	9.2378	10.430143	9.360266	9.463379	6.489378	9.447831	10.903	
Create	UBOX5	3.2487378	1.91793E-12	8.387049	10.084673	8.743403	9.672252	9.48364	9.728514	8.907234	9.334221	10.306	
() Analiga	PTPN11	3.2115548	3.82521E-10	7.537917	7.710541	7.411735	8.581072	7.466393	7.6486716	7.9327273	7.662014	8.341	
Analyze	PTPN11	3.0794282	2.40096E-10	8.521927	8.2926	7.80797	7.825087	8.136466	8.182257	8.850824	8.725579	8.142	
? How Do I	NLRC3	3.0719402	4.80065E-8	7.6724453	7.1750174	7.499383	7.171324	7.5981493	8.836507	8.775153	7.721654	7.85	
HOW DO L.	BTN3A2	3.0522006	1.42035E-7	12.91431	11.5201	11.198686	11.579397	11.238004	11.715298	10.799682	10.869517	11.144	
	BRSK2	2.9606092	3.87422E-7	11.293902	10.718032	11.768655	11.544154	11.576515	11.034814	11.625685	11.842785	10.922	
	ATP883	2.8765726	3.23001E-9	8.293775	7.883245	8.1803665	7.416564	7.033051	8.329629	7.2136025	8.282807	7.812	
	ESYT3	2.8720808	1.11849E-7	8.117061	7.846143	7.3183904	8.341785	7.363037	7.217808	7.6469154	7.284442	8.562	
	KCND2	2.7282608	1.66866E-7	8.412115	6.4206085	7.247424	5.775319	7.8352757	7.4985538	7.753048	7.7529225	7.7696	
	SERPINA3	2.6860447	4.13460E-5	8.151066	9.057943	9.368816	8.591873	9.637543	8.079781	8.342071	7.643507	7.0928	
	PTPN11	2.6535182	1.04689E-9	8.140511	9.276087	9.460297	8.909014	8.533441	8.4986925	9.207809	9.336363	9.382	
	STYX	2.6284957	1.26625E-8	9.159195	9.492662	9.3647	9.503523	10.034801	9.757686	9.374004	10.342917	10.61	
	HTRA4	2.594798	6.35478E-5	12.151765	12.472087	7.9943495	11.441798	9.473291	11.185007	12.645147	11.353391	14.46	
	POLI	2.5054376	2.55866E-8	11.505345	11.984146	11.454021	11.885055	11.587217	12.513001	11.769773	12.167779	12.093	
	PTPN11	2.4685328	8.39358E-9	8.639947	9.849392	8.986062	9.619337	8.141788	10.128944	7.334784	9.386153	8.465	
	SERTAD4	2.4242327	4.42611E-6	8.211092	7.9212646	9.580641	10.646118	9.496983	8.42558	8.678107	9.106121	11.327	
	FAM186B	2.376231	1.19509E-9	8.174937	8.266913	8.82824	7.8052125	7.220584	7.8088365	7.0107207	8.431958	8.347	
	PTPN11	2.334388	2.72442E-6	8.286793	7.053788	7.439002	6.860364	9.685516	7.0582094	8.683071	7.9744134	9.383	
	PTPN11	2.2863536	5.43504E-8	10.858402	11.794759	11.08012	11.202937	10.713544	11.738825	11.607066	12.323729	11.131	

6.2 Filter Probes by Value

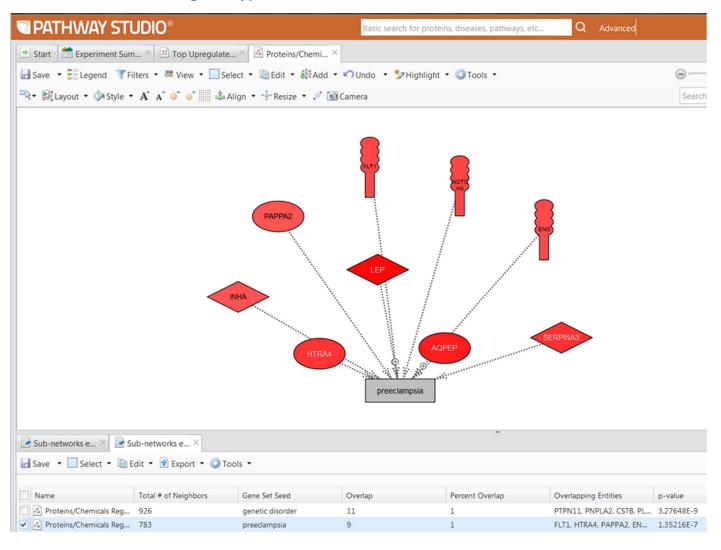
Filter probes by value (FC ± 0.6, p-val <= 0.01):

Name	severe preecla	severe preecla	normal labor	normal labor	normal labor	normal labor		normal labor
Class: phenotype		Filtor	Probes by Value				×	normal labor
OR8G2	5.5126495	2.701	FIODES by value					9.271023
LEP	4.9637337	1.180 Se	lect samples of inte	rest:	Select All	Deselect All		11.07477
PTPN11	4.6370516	2.179			Select All	Deselect All		7.2754884
DST	4.63438	3.793	Name					7.036616
PTPN11	4.1147614	1.111 🔽	🔣 severe preeclam	npsia vs normal labor				7.0825744
FAM181B	3.9508843	5.2818	🚺 normal labor			=		7.3405867
DNAAF5	3.805401	1.538	🚺 normal labor					10.087231
PTPN11	3.8042443	3.6249	normal labor					7.3042
AQPEP	3.6356006	7.442	normal labor					9.360266
UBOX5	3.2487378	1.9179	🚺 normal labor					9.48364
PTPN11	3.2115548	3.8252	normal labor					7.466393
PTPN11	3.0794282	2.4009	normal labor					8.136466
NLRC3	3.0719402	4.800	normal labor					7.5981493
BTN3A2	3.0522006	1.420	normal labor					11.238004
BRSK2	2.9606092	3.874	l Inormal labor			-		11.576515
ATP8B3	2.8765726	3.230	Filtering conditions	(specify at least one	e - mín, max or p-va	alue cutoff)		7.033051
ESYT3	2.8720808	1.118	Hide probes with	in 💌 range	-0.6 to 0.6			7.363037
KCND2	2.7282608	1.668	Hide probes with	in 🔻 range	-0.0 10 0.0			7.8352757
SERPINA3	2.6860447	4.134	Hide probes with p	-values exceeding	0.01			9.637543
PTPN11	2.6535182	1.046						8.533441
STYX	2.6284957	1.266						10.034801
HTRA4	2.594798	6.354			ОК	Cancel		9.473291
POLI	2.5054376	2.558					<u></u>	11.587217
PTPN11	2.4685328	8.39358E-9	8.639947	9.849392	8.986062	9.619337		8.141788
SERTAD4	2.4242327	4.42611E-6	8.211092	7.9212646	9.580641	10.646118		9.496983
FAM186B	2.376231	1.19509E-9	8.174937	8.266913	8.82824	7.8052125		7.220584


Select "Probes Remaining After Filtering" and run Experiment Summary Analysis:

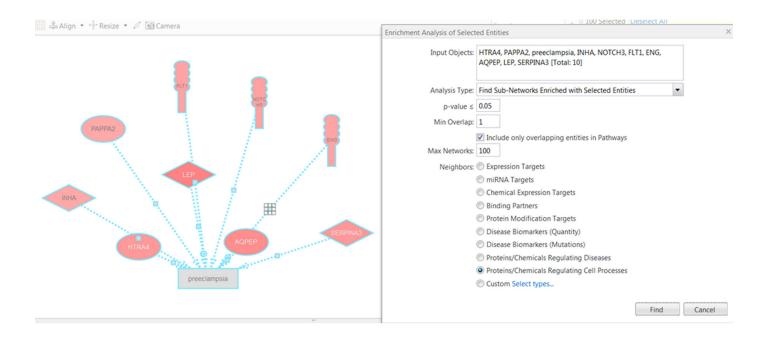
in an and a second													_
Placental gene			-										
Link Ver • 1	Fiter • Select	• 🖹 Edt • 💽 Expor	t · O Tools ·					ROATIAN	AY STUDIO"	in and it	polaria disessi pettodat eti	Q stand	-
			ent Analysis of S	Analysis of Selected Entities			ten termentan, termentan, termentan, termentan,						
Name	severe vs nor	severe is nor	All Network	Builder		normal	normal						_
Class phenotype			R. Find Sm	ilar Entities		normal	normal		ninary Analysis ng asperiment in Import a teo ang Man at	al a differential service and dark analyses.			
ORB52	1.6594728	2.700466-9				2.8654797	2,790856						
LEP	1.4942327	1.180306-9	Analyze			4,4854417	3. 38377						
OST	1,3950872	3.793836-8	E Diperini	ent Summary Ar	wysis	2.				Equinant Ma	then investig	et Analysis of the following	
not mapped	1.1911979	1.46514E-7	SE Calculate	Differential Exp	ression		A	· Debut seating	a la	Game Depression Presented game supremises in	anes - Social	 Inmunitique Petroau SIEN Toxity Petroau SIEN 	
FAM1818	11893346	5.281886-10	(3) Correlation			2.1537583	21, 107348	a 🔒 10p1		precisepts. URB report prime of URS why prime	-0304	on Targets Rethings	
CNAAFS	1.14554	1.538026-9	1.0040855	3200536	3.101197	2.9442358	3.036559		acrey 18-01-18 Iomani dema	1 differential service and 40 services another 2 phonologyces	 Introducto 	mor Rethings (2004) Is Rethings (2004)	
AQPEP	1.0944247	7.442316-8	3.0645737	2,8944016	2,780855	3.1397862	2.817721		Bonariar vontifice		 Cat Spra 	Paciaptic Sprating (2004) Call Sprating (2004) Information Pathways (2004)	
UBOXS	0.9779675	1.917926-12	2.5247533	3.035789	2.6320267	2.911638	2,85486		Perecentration (International Analysis) (C.Peccenter parts expression in series press			analuction Rethings	
N,RC3	0.9247461	4.800658-8	2.3096364	2.1598954	2.2575393	2.1587837	2.287271		Paraclamasia Workfox Risk Data Analysis		· Doore 1	Catholitere (EEEK) nee Fatholite (EEEK)	
BTN3A2	0.91880393	1.420356-7	1.887595	1.4671955	3.3711402	1.485746	3.382976		Townsteige Workflow Tarlent Analysis 1		 Top Dealers (PKH) Top Out Processes (PKH) 	and POL	
BRS(2	0.8912322	3.874226-7	3.3998034	3.2264493	3.542718	14751368	14642783		P Carlault II ¹ -28-28 II Marina II ¹ -28-28		 Top Top Top Top 	 Top AppLation (InDA) Top Up Doon regulated Dates: 	
ATP883	0.8659346	3.230028-9	2,496675	2,3730931	2.4625356	2.2326063	2.1171594						
ESYT3	0.8645824	1.118496-7	2.4434788 2.532299	2,3619244	2.2030551 2.183692	2.5111275	2.216495 2.358653		CT angle (shine have 30.22.24				
KCN02	0.82128835			1,9327958	2.181892	1.7385442		1.00	1000	Mart officerity serves	Mart differential serves		
SERPENA3 AICA	0.80858	4.134606-5 2.317286-9	2.4537253 3.7596374	2.7267125	15608096	2.5864115 3.6142702	2.9011893		and has extended a lower her party of	searched and a state of the			
STYX	0.79070340	1,266258-8	2.7571924	2.8575761	2,8190558	2.8608456	3.570673						
HTRAS	0.781230	6.354788-5	1.6580458	3.7544723	2,406539	14443245	2,851745						
not mapped	07582565	6.069028-7	4163945	5.2268276	\$ 2006135	5.067045	4.326849						
POU	07542119	2.558668-8	3.4634542	3.6075873	1.448004	1.577758	1.4881						
not macced	0.7348901	8.452936-7	4.1531773	5.092522	\$125626	4,991843	4,2945156						
SERTADA	0.7297668	4.426205-6	2,471785	2.3845382	2.8840601	3.2048008	2.8588747						
FAMILIE	07153364	1,195096-9	2.4609013	2.4885888	2,657565	2.3496032	2.1736124						
not macced	0.68651783	4,746176-6	4,390127	5.43.8519	5.435744	5.3627744	4,5802746						
TREMS	0.6617946	4.618866-5	3,3706708	3.6303499	3.8421424	3.8655019	2.5867772	×					
ARHGEF4	0.6588956	4.245536-5	1.9553034	2.6840663	3.10268	2.5099938	2,64608		Impet Spainart	(Column Difference Separate		Bart Analyses -	
METPS2	0.6483461	7.158636-7	3.2017024	2,9404874	2,5498763	3.2425885	3.023045	3.1061702	33934243 23	206839 3.0921745	3.3724415	2.976813	2
10548	0.6187061	3.312256-10	2.7921257	12563975	2.976877	2.801729	2.6035688	2.6363235	2.9193325 2.1	812768 1.0655367	2.4775454	3.2061277	1

Select the proper class comparison and then "Start Analyses."


6.3 Explore Enriched Pathways

Featured here are genes involved with pregnancy-induced hypertension that is up-regulated in placental tissue from patients with severe pre-eclampsia.

Sub-Network Enrichment Analysis (SNEA) of top 100 upregulated genes.


2A1	THWAY STU	DIO®				Basic search fo	or proteins, diseases,	pathways, etc	Q Advan	ced				He
>	Placental gene >													
	Link III View - 🍸	Filter 🔹 📃 Select	• 🕼 Edit • 🔮 Exp	• sloot 🔾 • troc										
	81 Selected Deselect /	AI .												
c	Name	severe vs nor	severe vs nor	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	norm
	Class: phenotype			normal	normal	normal	normal	normal	normal	normal	normal	normal	normal	n
0	NPNT NPNT	0.44512722		3.1023417	3.2248094	3.4157043	3.4132965	3.2288673	3.2977858	3.5062757	3.3817384	3.4121995	3.663438	3.530
	NNAT	0.4434109	9.53979E-5	3.94647	3.7396255	3.7091837	3.8382297	2.8080842	3.02899	2.896066	2.879545	3.7436192	3.182649	3.6365
Ρ	MEN1	0.43979645	7.27182E-7	2.8039706	3.0472481	3.1526365	3.051536	2.9830835	2.9087822	3.3052046	2.425587	3.24212	2.8756473	2.994
	VIPF3	0.438658	2.84004E-6	3.762888	3.4926126	3.9036512	3.9299152	3.7885773	3.1648135	4.0265975	2.7880785	3.955141	3.2503114	3.9228
I V.	ATF68	0.43605977	3.62654E-8	2.7417245	3.0361044	3.0630639	3.080202	3.0309026	3.0967891	3.0393126	2.8522089	3.2675545	3.273574	
	✓ LGALS38P	0.43538126	6.79423E-3	3.56586	3.3496656	2.9184978	3.5116282	3.2662728	3.2495165	3.0724404	2.4045794	3.827332	2.8888872	
In	SEMA4C	0.43186125	6.68509E-4	3.205084	Enrichment An	alysis of Selected I					× 3.3533008	3.805819	3.560887	3.103
	VAC14	0.43111405	7.72919E-9	3.5915947	_						3.4852612	3.668806	3.4087784	
C	HPR	0.42935127	1.21907E-1	3.045811	1		PC3, FAM186B, ATF6				2.1728206	4.5731807	2.4726877	2.2033
	SASH1	0.427992	5.90067E-9	4.20583			ILHE40, EMLS, ARHG P8B3, IGSF8, HTRA4,			-	4.2237034	4.3462715	4.169664	
A	SIN38	0.42405158		3.6913161					-	- Contraction -	2.8604374	3.6331463	3.108185	3.641
	RAMP2	0.42302758	1.87299E-8	3.325719		Analysis Type: Fin	nd Sub-Networks Enr	iched with Selected	d Entities	-	3.2729661	3.196245	3.2663696	
н	ATP2C2	0.42057437	1.77192E-2	2.8010795		p-value ≤ 0.0	15				2.81821	2.676007	2.4337893	2.22
	RAB6C	0.41815206	2.97490E-9			Min Overlap: 1					3.9752455	4.270508	3.9545894	3.949
	NDRG1	0.41804597	5.08273E-6	4.532816			1				4.7090926	4.890311	4.6042852	
	DIO2	0.4113841	4.67621E-3	2.2479587	_		Include only overla	pping entities in Pa	athways		2.6657708	3.5851734	3.1876554	
	 RNF123 	0.4094391	6.24977E-7	3.0602665	N	Max Networks: 10	0				2.8697982	3.3044136	2.8712993	
	PCDH9	0.4072031	8.67591E-6	2.3681765		Neighbors:	Expression Targets				2.530225	2.5228608	2.1531143	3.00
	CHAMP1	0.40412384	9.80263E-7	2.525023		C	miRNA Targets				2.4096093	2.7831118	2.7339106	2.750
1	NCSTN	0.40247694		3.8231494		C	Chemical Expressio	n Targets			2.8738153	3.9979572	3.4276645	
	SERPINB12	0.4004674	6.92528E-6	2.0277224		Õ	Binding Partners				2.197411	2.189994	2.4816809	2.220
	V TPBG	0.39685297	6.70166E-6	3.845428		Ő	Protein Modificatio	Theater			4.209281	4.3756123		
	V PPL	0.39583334	3.00594E-6	3.7763228		0					3.8753314	3.701276	3.6690228	3.692
	TAX18P3	0.39442956	6.73650E+3	4.307776			Disease Biomarkers				3.7941718	4.69043	4.3429413	3.596
	GANAB	0.38919744	5.08089E-4	3.7028787			Disease Biomarkers				3.0963032	4.003115	3.3544827	3.502
	TMEM259	0.3852087	8.35379E-3	3.5160267			Proteins/Chemicals				2.8254333	3.8352861	3.3689387	2.43
	PAPPA2	0.3827947	9.12374E-4	4.531005			Proteins/Chemicals		ocesses		4.579367	5.1233563	4.507966	3.940
	GHRH	0.3822635	5.17066E-6	2.7992003		\odot	Custom Select type	s			2.8608875	3.0602956	3.1308289	2.6854
	UYG1	0.3814309	6.43996E-5	2.3500373							2.9538636	3.088163	2.2893286	2.604
	INH8A	0.37970942	4.34216E-4	5.457439					Find	Cancel	5.326305	5.7031035	5.2954593	5.01
	RDH13	0.3783663	5.59466E-3	4.1284914							3.9919643	4,4220815	4.2916403	3.582
	PDUM4	0.37801388	2.41676E-4	2.9071834	3.0742755	3.0956736	2.8719835	2.5858452	3.2159784	3.1819751	3.0025294	3.1235828	3.2896454	2.24
	PNKD	0.3777332	7.28895E-7	2.6318958	2.5715091	2.6206493	2.8370788	2.721925	2.4106956	3.1601775	2.8671596	2.8938477	2.702548	2.794
	DNM1	0.3770212	5.74081E-5	2.4133556	2.6447651	1.879722	2.3850427	2.3488076	1.9695628	2.2308621	1.9859121	2.2856557	2.3963761	2.21
	UPK18	0.37568176	2.44222E-3	3.125448	1.8097585	2.387091	2.764363	1.9920123	2.2451837	2.3223517	2.5421264	2.4619868	2.5601742	2.417
	ESAM	0.37520668	5.35763E+3	4.004339	3.7591746	3.946518	4.3778987	4.2300262	3.2951097	4.336649	2.900568	4.389502	3.5136795	3.9645
	FN1	0.3740341	1.20002E-2	2.9919853	2.5668955	3.3349354	3.1899774	3.2947004	2.4375637	2.7626069	2.7993405	4.351434	3.1321595	2.773

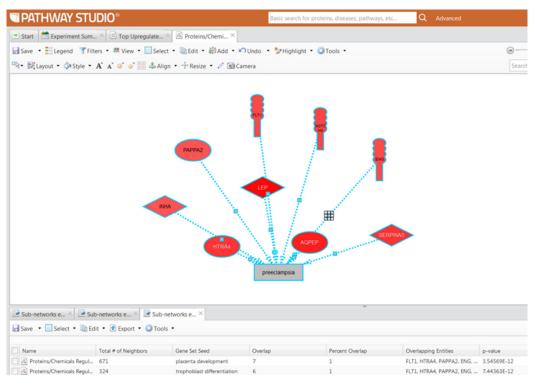
SNEA: diseases and genes/proteins leads to...

...identification of genes directly associated with pre-eclampsia as reflected in the scientific literature.

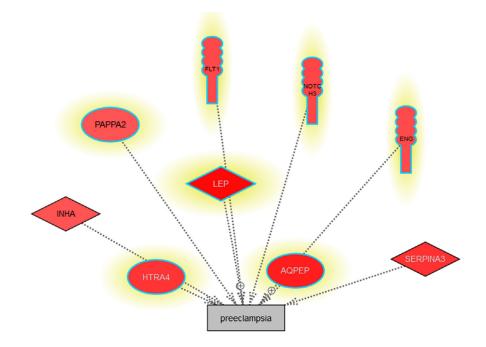
Question: What is the functional significance of this group of genes?

SNEA: cell process and genes/proteins

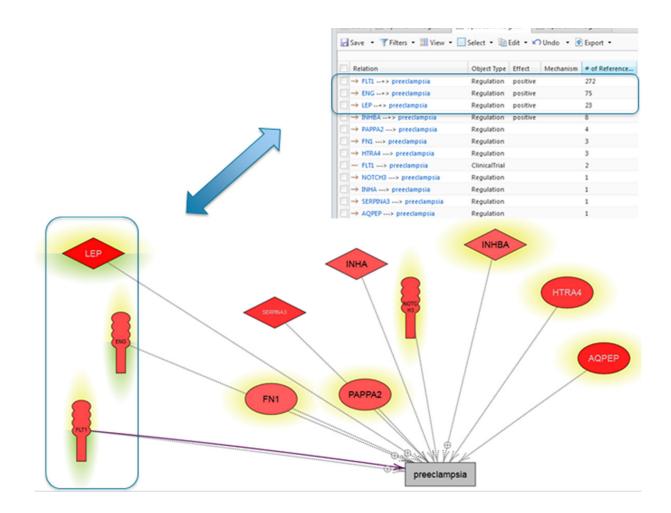
6.4 What Exactly is SNEA Doing, Anyway?



What exactly is SNEA doing, anyway?

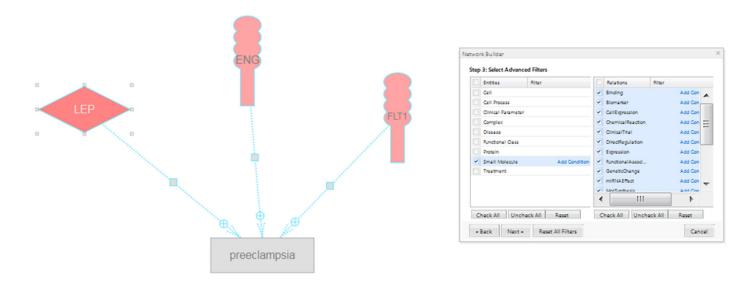

When you perform an SNEA (for diseases and genes/proteins, for example), the Pathway Studio program first identifies all relations between diseases and genes/proteins (>400K) in the entire

database. This becomes the basis (the sub-network) for enrichment analysis for the input genes/proteins in your list. The power of this approach is that the sub-network, which is generated "on the fly" every time an analysis is performed, always reflects the latest updates to the database (performed weekly). Another BIG advantage is that any combination of entities and relations as supported in the database overall can be precisely specified by the user. This allows for highly customized analyses that are either broad-based or fine-tuned. So, try it, you'll like it!

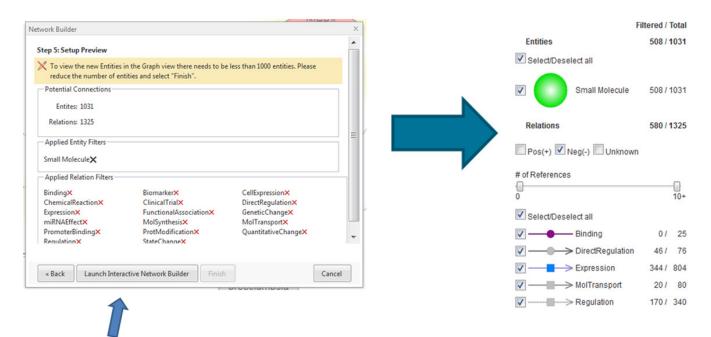


SNEA: cell process and genes/proteins

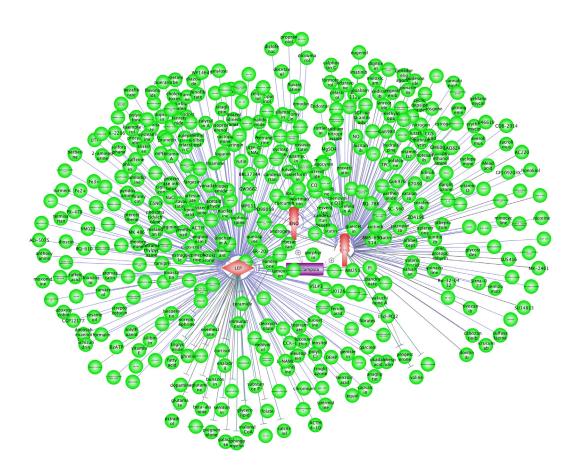
Placental development genes (yellow) overlaid on pre-eclampsia associated genes are clearly a major biological theme for this group.

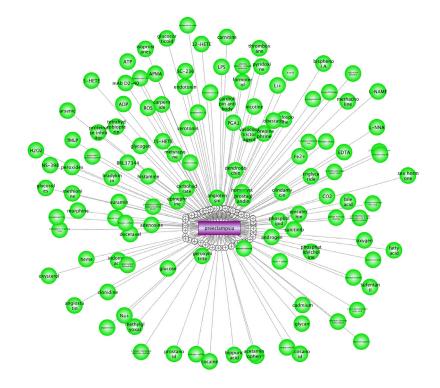


FLT1, ENG, & LEP are selected for further study on the basis of high literature metrics.



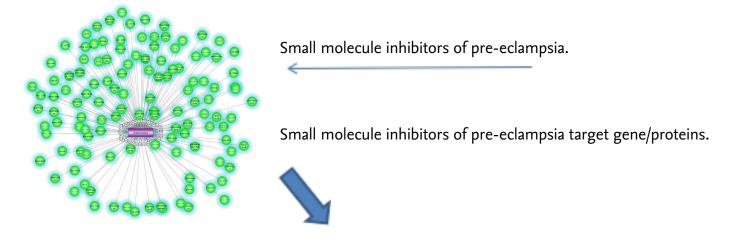
6.5 Small Molecule Inhibitors of Diseases and Genes


Identification of small molecule inhibitors of LEP, ENG, and FLT1.



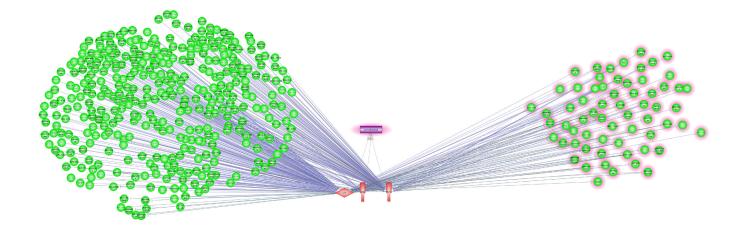
Use Network Builder: Advanced Expand Pathway Tool.

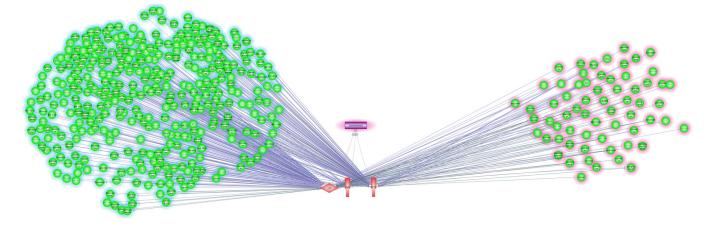
Launch Interactive Network Builder to filter for inhibitors only.


Small molecule inhibitors of pre-eclampsia target gene/proteins.

Small molecule inhibitors of pre-eclampsia disease as reported in the literature. (Hint: Use the same protocol you just used for small molecule inhibitors of ENG, LEP, and FLT1, and simply exchange those targets for the disease entity "pre-eclampsia.")

Now find small molecule inhibitors of both pre-eclampsia and target genes/ proteins (FLT1, LEP, and ENG). (Hint: This is essentially a combination of the two previous networks.)

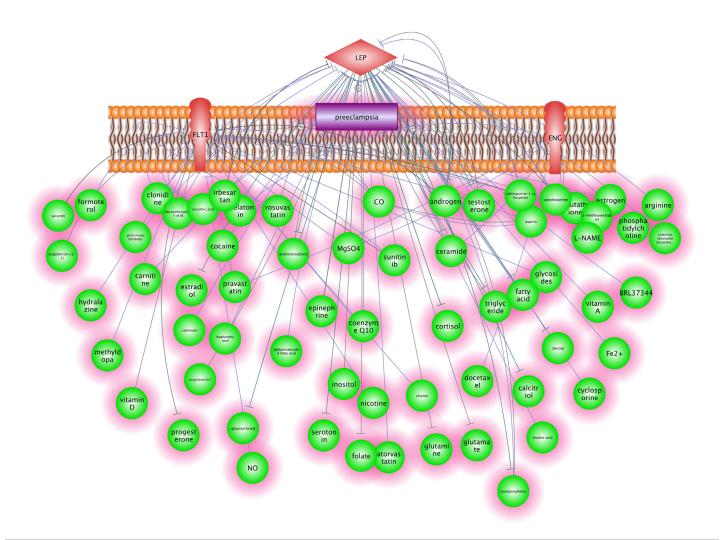

There are several ways to combine and manipulate networks in Pathway Studio, let's look at one of the simplest, shall we?



Step One: Select All and edit/copy the small molecule inhibitors of pre-eclampsia.

Step Two: Go to the small molecule inhibitors of FLT1, ENG, and LEP network, select "Clipboard Content," and highlight selections in red.

Step Three: Now just pull the selected objects as a group away from the unselected objects. (Hint: First make the whole display smaller using the slider in the upper right corner of the dashboard. Also, after you move the selection over then immediately move FLT1, ENG, and LEP to the right- hand side as well – this way they won't get lost in the final step below!)



Step Four: Box the left-hand side, which will select everything on that side.

Step Five: Edit/remove selection.

Step Six: Rearrange the graphic to your taste. (Hint: This view was prepared by using "Layout by Localization, Plain Membrane" followed by some rearrangements formatted by hand to make a more pleasing visual! of ?)

Be patient with yourself!

It may take several attempts to get it right!

OK, are you ready for a little more?

6.6 Small Molecules in Clinical Trials

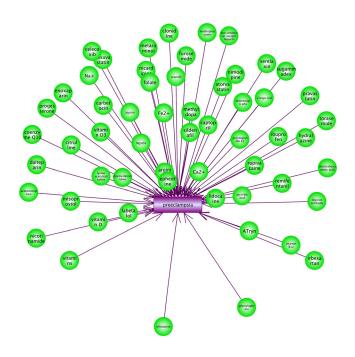
Just one last question!

How many of the small molecule inhibitors of FLT1, ENG, LEP, and pre-eclampsia are already in clinical trials?

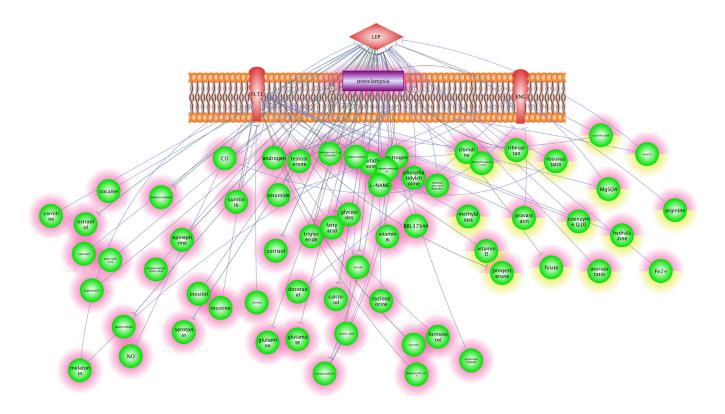
Good question, right?

How to go about answering that, I wonder.

Hey, c'mon this should be easy by now!



All you need to do is map the small molecules in clinical trials to the disease of pre-eclampsia...


First, create a new pathway with the entity of preeclampsia disease.

Using the network builder, add small molecules as the entity and clinical trials as the relation, and you will get something that looks like this.

Now, select all, edit/copy, and then go to the preecalmpsia network last constructed, and select "Clipboard Content."

Highlight selection by "Mix-in" Yellow (Note: This will in essence do a double highlight in yellow of small molecule inhibitors of FLT1, ENG, LEP, and pre-eclampsia already highlighted in red, which also are in clinical trials, and make it very easy to see these small molecules against the general background).

So before we go home...

What did we learn today?

- You learned data analysis of differential gene expression values.
- You learned filter probes by value (e.g. fold change and p-value).
- You ran an "Experiment Summary Analysis."
- You learned how to run an SNEA and understand what it is doing.
- You learned identification of small molecule inhibitors for selected target genes/proteins.
- You learned identification of small molecules involved in clinical trials for a specific disease.

Study Questions 6

Before answering the questions, read in data provided, use Name+Alias for probe ID, and use Benjamini-Hochberg for multiple comparisons correction:

- 1. Find the top 10 upregulated genes (by fold change) for the expression data in the module. (Hint: Count repeating genes one time only.)
- 2. Run an Experimental Summary and an SNEA (diseases) on the top upregulated genes. List the top five diseases (by p-value).
- 3. Run an SNEA (cell processes) on the top upregulated genes. List the top five cell processes (by p-value).
- 4. The "endocardial cushion" from Question 3 is involved in what major organ?
- 5. List the top five small molecule inhibitors of LEP (by # of references).
- 6. Run an SNEA (diseases) on all small molecule inhibitors of LEP. List the top five diseases (by p-value).
- 7. List the top five small molecule inhibitors of LEP in clinical trials for diabetes mellitus (by # of trials). (Hint: Click on SNEA subnetwork from Question 6, select diabetes mellitus in Pathway Viewer and "Add Relations between Selected and Unselected," and filter for clinical trials.)

For Connections Between Entities Not Directly Connected, How Do I...

Exercise 6.1: Can two proteins not directly connected, be connected through protein/small molecule (s)?

Identifies shortest path of molecular connection (physical interactions) between two proteins in the database through proteins/small molecule intermediates through selected relations type. (Can be extended to non-physical interactions by selecting additional relation types) Note: Regulation is the least specific relation type and should be excluded unless more specific relations do not produce results.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Shortest Path for Pair of Entities. Advanced Shortest Path for Pair of Entities Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein and Small Molecules" Relations: Select "Binding, ChemicalReaction, DirectrRgulation, Expression, miRNAEffect, MolSynthesis, MolTransport, PromoterBinding"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 6.2: Can two proteins not directly connected, be connected through association to diseases/cell(s)?

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Shortest Path for Pair of Entities, Advanced Shortest Path for Pair of Entities Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Cell Process + Disease" Relations: Select "Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 7

Biomarker ID and Drug Repurposing

Contents

7.1	Introduction	113
7.2	Zika Virus Use Case Workflow	. 114
7.3	SNEA on Zika Virus Up-regulated Genes versus Diseases	. 115
7.4	Diseases Involving Disorders of Glucose Metabolism	116
7.5	Identifying Major Regulators	
7.6	Using the Interactive Network Filter for Better Specificity	119
7.7	Identify Major Therapeutic Point of Intervention	121
7.8	Mapping Candidate Drugs Both In and Outside of Current Clinical Trials	123
Study	Questions 7	131
How D	Do I: Protein /Small Molecule Transport:	132
Exercis	se 7.1: What protein mediates the translocation of a protein or small molecule?	.132
Exercis	se 7.2: What small molecule mediates the translocation of a protein?	.132

7.1 Introduction

Zika Virus Infection and Microcephaly

Public health alert

The CDC has issued an alert for travel to areas where Zika virus is spreading, which now includes Miami-Dade County, Florida, Puerto Rico, American Samoa, and the US Virgin Islands. Travelers who are pregnant or considering pregnancy should consult a doctor.

A disease caused by Zika virus that's spread through mosquito bites.

Zika Virus Infection and Microcephaly What causes congenital microcephaly?

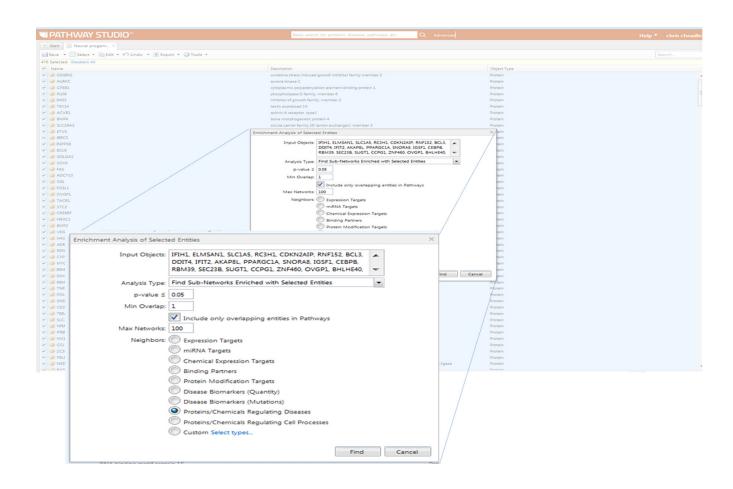
Causes of congenital microcephaly may include genetic conditions (e.g., chromosomal abnormalities), craniosynostosis, cerebral anoxia, or maternal exposures (e.g., alcohol, mercury, radiation, or severe malnutrition) during pregnancy. Maternal infections that have been associated with microcephaly include cytomegalovirus (CMV), herpes simplex virus, rubella virus, lymphocytic choriomeningitis virus (LCMV), varicella, Treponema pallidum (i.e., syphilis), and Toxoplasma gondii. Additional information about microcephaly is available on <u>CDC's Microcephaly website</u>.

What is the link between Zika virus and microcephaly?

There is now scientific consensus that Zika virus is a cause of microcephaly - a congenital malformation with smaller than normal head size for age and sex. It has also been associated with other birth defects and neurologic conditions in children and adults.

7.2 Zika Virus Use Case Workflow

- Import genes up-regulated by Zika virus infection in neural progenitor cells.
- Explore potential disease associations of Zika virus up-regulated genes using the tools of causal reasoning in Pathway Studio.
- Map major regulator genes included in the Zika up-regulated genes, which are common to multiple disorders of glucose metabolism.
- Select model target gene/protein (EDN1) as a potential point of intervention.
- Map small molecule inhibitors of the model target gene/protein (EDN1) already in clinical trials for the treatment of insulin resistance.


Dropbox link for Zika virus up-regulated gene list

Copy and paste gene list into Pathway Studio (Import Entity List).

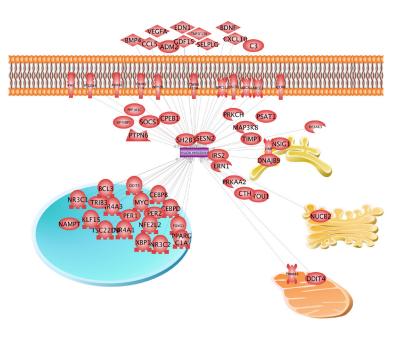
Projects	Import
Curated Pathways	Experiment Import gene expression, proteomics, or metabolomics experiment for analysis. Import Experiment Import Experiment
Variation Database	Import Entity List
Import	Import Entity List ×
+ Create	Copy and Paste List manwar/20 SNORD117
Analyze	● SNORD117 ● EPN2-451 SNORD124
How Do L.	Or Load File:
	Drs. Browse
	Row
	« Back Next »
	· · · · · · · · · · · · · · · · · · ·
	ID Count: 476
	Input IDs: OSGIN2
	AURKC CPEB1
	DI D4
	Items Type: Protein
	Type of Identifiers: Name

7.3 SNEA on Zika Virus Up-regulated Genes versus Diseases

Perform a Sub-Network Enrichment Analysis (SNEA) on Zika virus up-regulated genes versus diseases

7.4 Diseases Involving Disorders of Glucose Metabolism

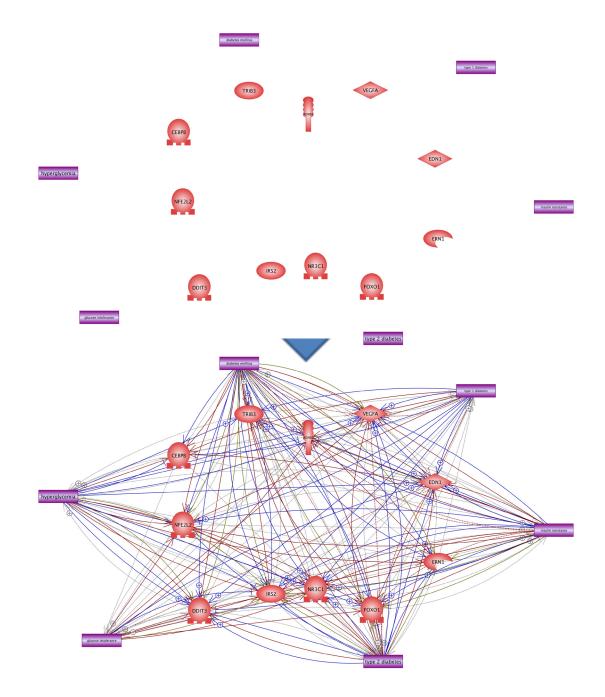
Diseases involving disorders of glucose metabolism are enriched in Zika infection up-regulated gene


athway Studio			Basic search fo	r proteins, diseases, pathways, etc.	. Q Advanced	
• Start III test2 ×						
Save • Select • 🗈 Edit	• Dundo • Proort	• O Tools •				
176 Selected Deselect All				-		
🔄 Sub-networks e ×						
🚽 Save 🔹 🛄 Select 🔹 🛅 Edit	• 🖻 Export • 💭 Tools					
5 Selected Deselect All						
Name	Total # of Neighbors	Gene Set Seed	Overlap	Percent Overlap	Overlapping Entities	p-value
Proteins/Chemicals Regul	-	carcinogenesis	144	2	NR1D1, CDKN2AIP, MYBBP1	
Proteins/Chemicals Regul		malignant transformation	54	3	CCL5, SERTAD1, BCL3, DDIT4	
Proteins/Chemicals Regul		neoplastic transformation	56	3	BCL3, XBP1, NR3C1, SLC3A2,	
Proteins/Chemicals Regul		metastasis	98	1	KCNJ3, DDIT4, IFIT2, PPARGC	
Proteins/Chemicals Regul		atheroscierosis	72	2	NR1D1 IFIH1 PTGER4 CCL5	
 Proteins/Chemicals Regul 		insulin resistance	67	2	PTGER4, CCL5, DDIT4, BCL3,	
Proteins/Chemicals Regul		steatohepatitis	51	3	NR1D1, PTGER4, CCL5, NR1D	
Proteins/Chemicals Regul		inflammation	118	1	NR1D1, IFIH1, RC3H1, KCNJ3	
Proteins/Chemicals Regul		autoimmunity	42	3	IFIH1, RC3H1, CCL5, BCL3, KL	
Proteins/Chemicals Regul		cancer	138	1	IFIH1, CDKN2AIP, SLC1A5, M	
Proteins/Chemicals Regul		virus infection	49	2	IFIH1, CCL5, KLRD1, NR3C1	2.13639E-15
Proteins/Chemicals Regul		cardiac hypertrophy	46	2	CA2, PTGER4, DDIT4, FOSL1	
Proteins/Chemicals Regul		death	104	1	IFIH1, RC3H1, KCNJ3, MYBBP	
Proteins/Chemicals Regul		obesity	64	2	SLC1A5, MAGEL2, CCL5, NR3	
Proteins/Chemicals Regul		neoplasm	144	1	IFIH1, CDKN2AIP, SLC1A5, M	
Proteins/Chemicals Regul		glucose intolerance	37	3	SERTAD1, XBP1, NR3C1, PRK	
Proteins/Chemicals Regul		diabetes mellitus	83	1	IFIH1, PTGER4, CCL5, BCL3, S	
Proteins/Chemicals Regul		inflammatory disease	45	2	NR1D1, IFIH1, PTGER4, CCL5,	
Proteins/Chemicals Regul		gastric cancer	52	2	PTGER4, CCL5, CEBPB, ING2,	
Proteins/Chemicals Regul		infection	95	1	NR1D1, IFIH1, PTGER4, CCL5,	
Proteins/Chemicals Regul		atherogenesis	36	3	BIRC3, PTGER4, CCL5, NR3C1	
Proteins/Chemicals Regul		breast cancer	82	1	MYBBP1A, PTGER4, KCNJ3, C	
Proteins/Chemicals Regul		hepatocellular carcinoma	73	1	SLC1A5, CCL5, BCL3, XBP1, N	
Proteins/Chemicals Regul		chronic inflammation	34	3	IFIH1, PTGER4, CCL5, NR3C1,	
Proteins/Chemicals Regul		injury	89	1	PTGER4, CCL5, DDIT4, NR3C	
Proteins/Chemicals Regul		experimental autoimmune e	31	3	PTGER4, CCL5, ADRB2, CCR6,	
Proteins/Chemicals Regul		type 2 diabetes	48	2	CCL5, DDIT4, XBP1, NR3C1, C	
Proteins/Chemicals Regul		vasculitis	32	3	PTGER4, CCL5, NR3C1, PRKA	
Proteins/Chemicals Regul		atrophy	39	2	NOG, CCL5, DDIT4, BCL3, NR	
Proteins/Chemicals Regul		fibrosis	58	1	PTGER4, CCL5, NR3C1, XBP1,	
Proteins/Chemicals Regul		diabetic nephropathy	33	2	TIMM44, DSPP, PTGER4, DN	
Proteins/Chemicals Regul		cardiac remodeling	34	2	PTGER4, CCL5, C3, PRKAA2,	6.42884E-12
Proteins/Chemicals Regul		vascular remodeling	35	2	PTGER4, CCL5, C3, PPARGC1	
Proteins/Chemicals Regul		hypertrophy	52	1	PTGER4, CCL5, DDIT4, NR3C	
Proteins/Chemicals Regul		osteoarthritis	35	2	NR1D1, NOG, PTGER4, CCL5,	
Proteins/Chemicals Regul		type 1 diabetes	36	2	IFIH1, PTGER4, CCL5, BCL3, N	
Proteins/Chemicals Regul		endothelial cell dysfunction	37	2	NOG, BIRC3, IFIH1, PTGER4,	2.57195E-11
Proteins/Chemicals Regul		metabolic disorder	37	2	NR1D1 NR1D2 SERTAD1 N	

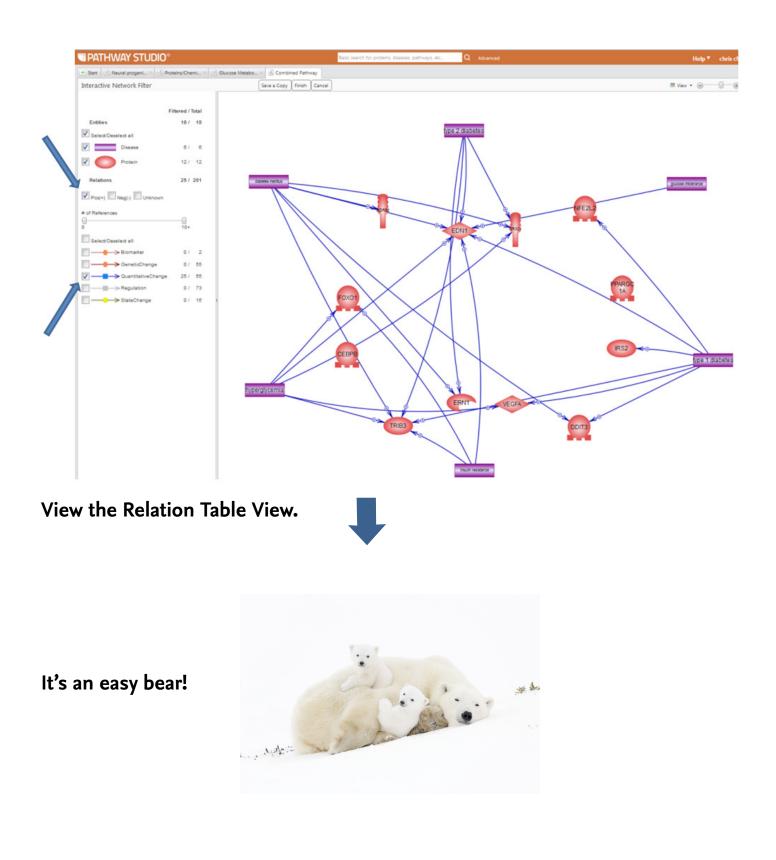
Save all five gene networks to your project folder.

Proteins/Chemicals Regulating Diseases of insulin resistance	Pathway	68
Proteins/Chemicals Regulating Diseases of glucose intolerance	Pathway	38
Proteins/Chemicals Regulating Diseases of diabetes mellitus	Pathway	83
Proteins/Chemicals Regulating Diseases of type 2 diabetes	Pathway	49
Proteins/Chemicals Regulating Diseases of type 1 diabetes	Pathway	37

7.5 Identifying Major Regulators


All Zika infection up-regulated genes/ proteins related to insulin resistance. (Hint: use "Layout by Localization, Plain Membrane")

Combine all five disorders of glucose metabolism and take their intersection:

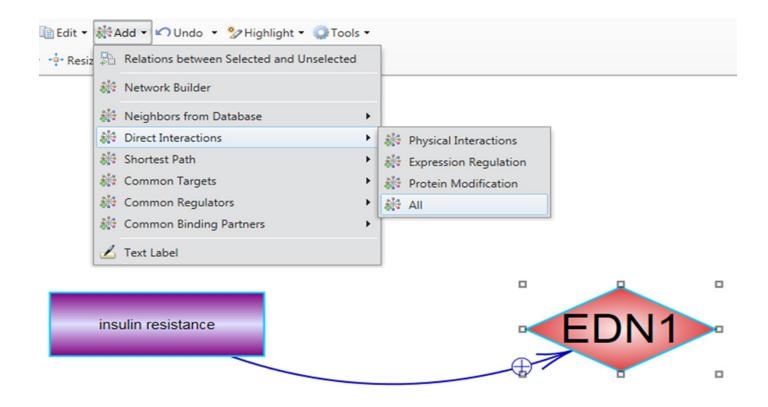

		Combine 5 selected	nathways			
Combine						×
		Proteins/Chemicals Reg	gulating Diseases of typ	e 1 diabetes	Pathway	
	💌 🛃 P	Proteins/Chemicals Reg	gulating Diseases of typ	e 2 diabetes	Pathway	
			gulating Diseases of dia		Pathway	
			gulating Diseases of glu		Pathway	
		Proteins/Chemicals Rec	gulating Diseases of ins	ulin resistance	Pathway	

Copy and paste all five diseases of glucose metabolism back into the gene/ protein intersection and add "Relations between Selected and Unselected":

Zika up-regulated genes related to all six glucose metabolic disorders. Use the Interactive Network Filter and select gene/protein activators only.

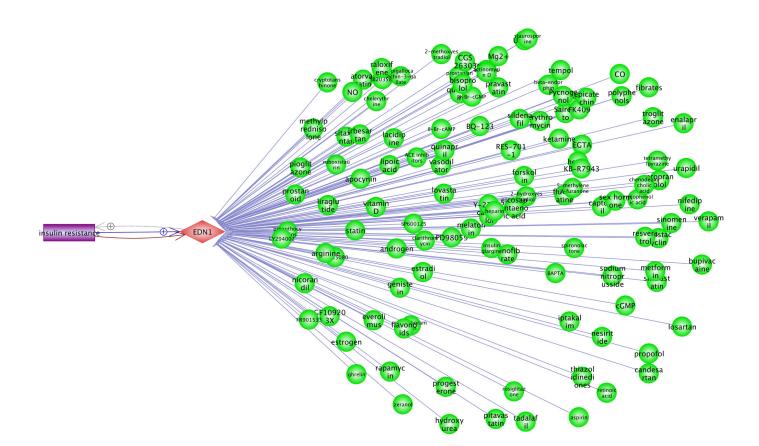
7.6 Using the Interactive Network Filter for Better Specificity

Target identification: Endothelin 1 (EDN1)


IPATHWAY STUDIO												
Start 🔄 EN1 clinical t 🖄 sn	nall molecule 👋 🔬 G	ucor Vetabo ×	🔄 Glucose Metabo	🐣 🙆 Combin	ned Pathway 🖄 🙆 Glu	ucose Metabo ×						
Save 🔹 🍸 Filters 🔹 🛄 View 🔹 [Select	🖹 Exp	• no									
Relation	0.00	# of References	CellType	Effect	ChangeType	QuantitativeType	BiomarkerType	Mechanism	Organism	Organ	Tissue	CelLineNam
- diabetes mellitus+> EDN1	QuantitativeChange	140	8-cell, adipocyte, bl	positive		abundance, abund			Homo sapiens, Mus	Aorta, Arteries, Bio	Blood, Blood Vessel	373
- hyperglycernia+> VEGFA	QuantitativeChange	96	Mueller cell, Schwa	positive		abundance, expres			Bos taurus, Homo s	Blood Vessels, Bon	Blood, Endothelium	
- diabetes mellitus+> NAMPT	QuantitativeChange	48	8-lymphoid precurs	positive		abundance, abund			Homo sapiens, Mus	Brain, Intestines, Joi	Adipose Tissue, Wh	
- diabetes mellitus+> DOIT3	QuantitativeChange	32	bone marrow deriv	positive		expression, abunda			Homo sapiens, Mus	Heart, Hippocampu	Myocardium	
- insulin resistance+> EDN1	QuantitativeChange	25	endothelial cell, ske	positive		abundance, abund			Homo sapiens, Ratt	Blood Vessels, Liver	Endothelium, Musd	
- hyperglycemia+> EDN1	QuantitativeChange	23	endothelial cell, kid	positive		abundance, abund			Bos taurus, Homo s	Aorta, Blood Vessel	Endothelium, Musd	
- diabetes mellitus+> TRIB3	QuantitativeChange	22	germ cell, hepatocy	positive		abundance, expres			Homo sapiens, Ma	Aorta, Colon, Heart	Muscles, Skeletal m	
- type 1 diabetes+> VEGFA	QuantitativeChange	14	endothelial cell, epi	positive		abundance, abund			Homo sapiens, Mus	Carotid Arteries, Ki	Myocardium, Plasm	
- insulin resistance+> FOXO1	QuantitativeChange	13	adipocyte, hepatoc	positive		activity, expression,			Homo sapiens, Ratt	Brain, Head, Liver	adipose tissue, epid	HepG 2
- insulin resistance+> NAMPT	QuantitativeChange	12		positive		abundance, abund			Homo sapiens	Placenta	Plasma, adipose tis	
- insulin resistance+> TRIB3	QuantitativeChange	10	adipocyte, insulin-s	positive		expression, express			Homo sapiens	Liver, bone	Skeletal muscle, adi	C2C12
- hyperglycemia+> NAMPT	QuantitativeChange	7	adipocyte, neutrophil	positive		abundance, abund			Homo sapiens		Plasma, adipose tis	
- hyperglycemia+> FOXO1	QuantitativeChange	7	insulin-secreting cell	positive		abundance, abund			Mus musculus	Heart, Islets of Lang	Vascular Endotheli	
- type 1 diabetes+> EDN1	QuantitativeChange	6		positive		abundance, abund			Homo sapiens, Ratt	Kidney Glomerulus	Plasma, Urine	
- hyperglycemia+> TR083	QuantitativeChange	5	insulin-secreting ce	positive		abundance, abund			Rattus norvegicus,	Islets of Langerhans	Muscles, Skeletal m	INS1
- type 1 diabetes+> NAMPT	QuantitativeChange	5	smooth muscle my	positive		abundance, abund			Homo sapiens	Blood Vessels	Plasma	
- diabetes mellitus+> ERN1	QuantitativeChange	4	monocyte	positive		expression, activity,			Homo sapiens	Heart		
- diabetes mellitus+> NR3C1	QuantitativeChange	3	trophoblast	positive		abundance, expres			Rattus norvegicus	Adrenal Medulla, Li		
- hyperglycemia -++> NR3C1	QuantitativeChange	2		positive		expression, express				Liver	Blood	
- glucose intolerance+> EDN1	QuantitativeChange	2		positive		abundance, abund			Homo sapiens		Plasma	
- diabetes mellitus+> ADR82	QuantitativeChange	2		positive		expression, express			Rattus norvegicus	Soleus muscle	Myocardium	
- type 1 diabetes+> TRIB3	QuantitativeChange	1		positive		expression			Rattus norvegicus	Kidney		
- diabetes mellitus+> KLF15	QuantitativeChange	1	hepatocyte	positive		abundance				Liver		
- type 1 diabetes+> DDIT3	QuantitativeChange	1		positive		expression					Neuroepithelium	

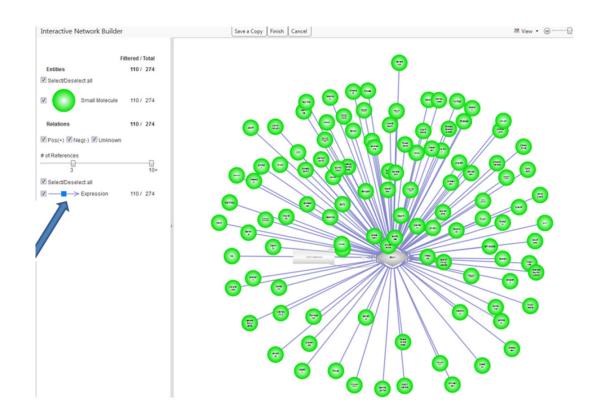
Now, focus on EDN1 and insulin resistance.

7.7 Identifying Major Therapeutic Point of Intervention


Question: Insulin resistance results in an increase in EDN1 levels, but is there any evidence that decreasing EDN1 levels is therapeutic?

Answer: Evidence from animal models is that EDN1 is causal for insulin resistance and, therefore, might be a good candidate for therapeutic intervention.

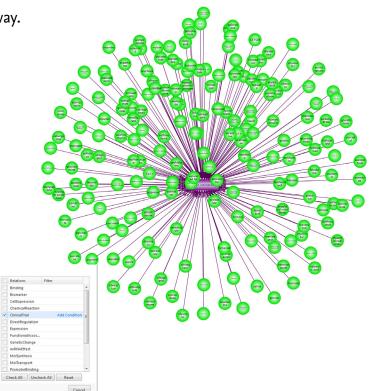
insulin resistance		EDN1	
	\rightarrow	Regulation (positive) EDN1+> insulin resistance 75 references	
		Whole animal studies also support the contention that ET-1 is involved in the development of insulin resistance.	
		In vivo administration of ET-1 into rats and healthy humans also induces insulin resistance and glucose intolerance at least in part by effects on skeletal muscle glucose uptake that are independent of effects on blood flow.	
		ET-1 induces insulin resistance in rat adipocytes and rat arterial smooth muscle cells .	


Map small molecule inhibitors of EDN1:

- Select EDN1.
- Add, Network Builder.
- Use Advanced Expand Pathway Tool.
- Select "Upstream."*
- Use Advanced Filters.
- Select Small Molecule as Entity.
- Select Expression as Relation.
- Add Condition to Expression.
- Select Effect = negative.
- Click Next, then Entire Database.
- Click Next, then Launch Interactive
 Network Builder

	Entities	Filter		Relations	Filter	
	Cell			Binding		-
	Cell Process			Biomarker		
	Clinical Parameter	r		CellExpression		
	Complex			ChemicalReactio	n	
	Disease			ClinicalTrial		=
	Functional Class			DirectRegulation	n	
	Protein		v	Expression	"Effect" = 'negative	e'
•	Small Molecule	Add Condition		FunctionalAssoc		
	Treatment			GeneticChange		L
				miRNAEffect		
				MolSynthesis		
				MolTransport		
				PromoterBinding)	-

* Select "Upstream" in the Expand Pathway Tool because you are looking for small molecules that act upon EDN1. In other words, they inhibit EDN1 gene expression or protein abundance. If you had selected "Downstream," you would have been asking for small molecules that EDN1 acts upon instead.



Use the Interactive Network Filter. Select References to a minimum of 4.

7.8 Mapping Candidate Drugs Both In and Outside of Current Clinical Trials

Map small molecules in clinical trials for the treatment of insulin resistance.

- Copy Insulin Resistance into a New Pathway.
- Select Insulin Resistance.
- Add Network Builder.
- Use Advanced Expand Pathway Tool.
- Select Direction "All."*
- Use Advanced Filters.
- Select Small Molecule as Entity.
- Select ClinicalTrial as Relation.
- Click Next, then Entire Database.
- Click Next, then Finish.

Check All Uncheck All Reset

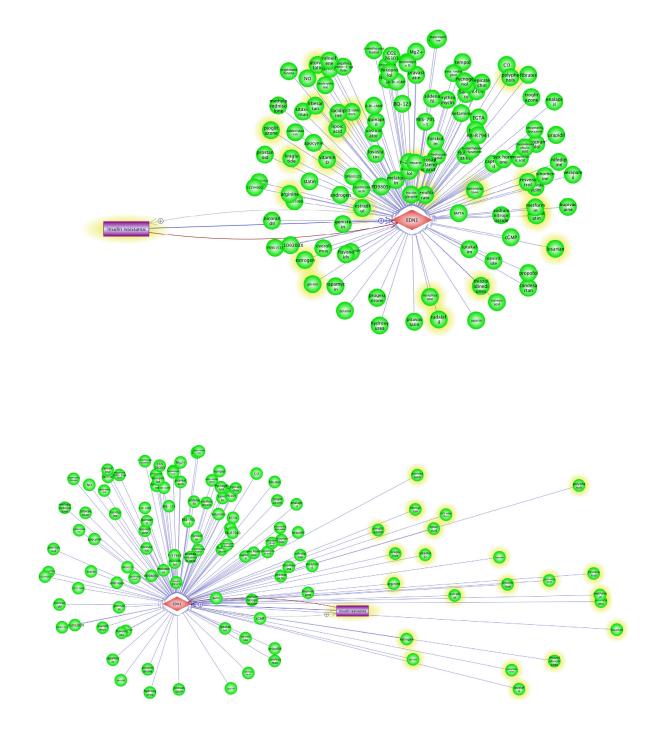
« Back Next » Reset All Filters

Inspect "Relation Table View" for additional information on clinical trials: example metformin.

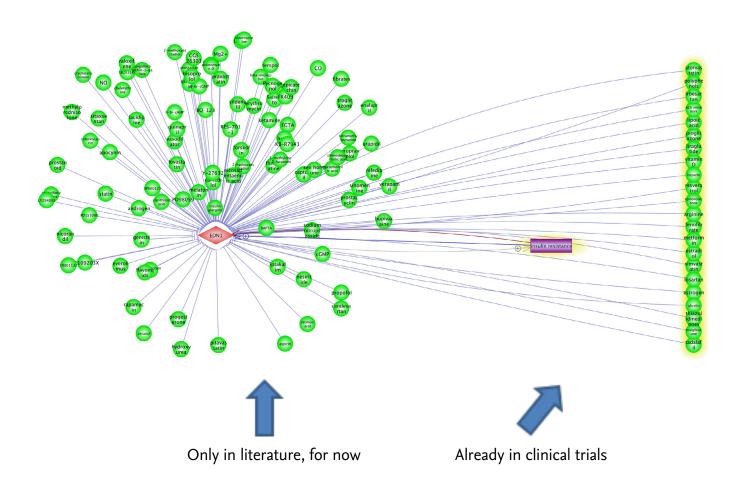
Metformin, one of the leading drug treatments for insulin resistance, has been successfully repurposed as an anti-cancer drug.

V - m		Object Type	# of References	Source	ChangeType	CellType	Organ	Organism	Tissue	CellLi
	etformin> insulin resistance	ClinicalTrial	34	Medscan, Medsc						
🔲 — pi	ioglitazone> insulin resistance	ClinicalTrial	20	Medscan, Medsc						
🔲 — ro	osiglitazone> insulin resistance	ClinicalTrial	17	Medscan, Medsc						
14 4	Page 1 of 1 ▶ ▶ 47		•					Iter	ns per page 99	0 Displayir
- Clinic	calTriak ×				-					
→ - (ClinicalTrial metformin> insulin re	esistance								
▲ Prope Re	erties [1] A Clin eferences (34)	nical Trial to Prevent the Com	plications of Insulin Re	sistance (Including T	rpe-2 Diabetes)					
		vant Sentences Other av	ailable information							
▷ Colle		ce: Medscan, TrialStatus: Com	pleted, Phase: Phase 2,	StudyType: Intervention	onal, NCT ID: NCT	00015626, Interve	ntion: Metformin;	skin biopsy; diet and ex	ercise; pioglitazon	e; rosiglitazor
			,	▼ .						
linicalTri	als any							Example: "Heart attack" Al	ND "Los Angeles"	
	tional Institutes of Health	Netherland					Gearch for studies:	Example: "Heart attack" A		
ervice of the U.S. Na	tional Institutes of Health		ble: Final Rule for FD/	AAA 801 and NIH Pe	licy on Clinical T					Searc
ervice of the U.S. Na ind Studies - A	tional Institutes of Health		ble: Final Rule for FD. bout This Site	AAA 801 and NIH Pe	licy on Clinical T					pic Glossary
ind Studies - A me > Find Studies >	tional institutes of Health bout Clinical Studies Submit Si Study Record Detail	tudies → Resources → A	bout This Site -		licy on Clinical T					pic Glossary
ind Studies - A me > Find Studies > Clinical Trial to	tional Institutes of Health bout Clinical Studies Submit St bout Clinical Studies Study Record Detail Prevent the Complications o	tudies ∞ Resources ∞ A of Insulin Resistance (In	bout This Site -		licy on Clinical T					pic Glossary
ind Studies - A me > Find Studies > Clinical Trial to	tional Institutes of Health bout Clinical Studies Submit St bout Clinical Studies Study Record Detail Prevent the Complications o	tudies → Resources → A	bout This Site -		licy on Clinical T					pic Glossary
Ind Studies A A A A A A A A A A A A A A A A A A A	tional Institutes of Health bout Clinical Studies Submit Si Study Record Detail Prevent the Complications o n completed. r Research Resources (NCRR)	f Insulin Resistance (In ClinicalTrials.gov Identifier: NCT00015626 First received: April 24, 2001 Last updated: June 23, 2005	Lbout This Site -		licy on Clinical T					pic Glossary
Ind Studies - A me > Find Studies - A Clinical Trial to his study has been ponsor: lational Center for uformation provided	tional Institutes of Health bout Clinical Studies Submit Si Study Record Detail Prevent the Complications o n completed. r Research Resources (NCRR)	tudies - Resources - A finsulin Resistance (In ClinicalTrials.gov Identifier: NCT00015626 First received: April 24, 2001	Lbout This Site -		licy on Clinical T					pic Glossary
ind Studies - A me > Find Studies - Clinical Trial to his study has been iponsor: Jational Center for anormation provided	tional Institutes of Health bout Clinical Studies Submit Si bout Clinical Studies Submit Si Prevent the Complications o n completed. r Research Resources (NCRR) by:	d Insulin Resistance (In ClinicalTrials.gov Identifier: NCT00015626 First received: April 24, 2001 Last update: June 23, 2005 Last verified: December 2003 History of Changes	Lbout This Site -	abetes)	licy on Clinical T					pic Glossary
Ind Studies - A me > Find Studies - A Clinical Trial to his study has been ponsor: lational Center for formation provided lational Center for R Full Text View	tional Institutes of Health bout Clinical Studies Submit Si Study Record Detail Prevent the Complications of completed. r Research Resources (NCRR) by: lesearch Resources (NCRR)	d Insulin Resistance (In ClinicalTrials.gov Identifier: NCT00015626 First received: April 24, 2001 Last update: June 23, 2005 Last verified: December 2003 History of Changes	cluding Type-2 Dia	abetes)	licy on Clinical T					pic Glossary
Ind Studies A A me > Find Studies > Clinical Trial to his study has been ponsor: lational Center for information provided ational Center for R Full Text View Purpose goal of this study is	tional institutes of Health bout Clinical Studies Submit Si bout Clinical Studies Submit Studies Submit Si bout Clinical Studies Submit Si bout Clinical Studies Submit Si bout Clinical Studies Submit	tudies • Resources • A of Insulin Resistance (In ClinicalTriats.gov Identifier: NCT00015626 First received: April 24, 2001 Last update: June 23, 2005 Last verified: December 2003 History of Changes Posted Disclaimer	bout This Site	abetes) cord	the subsequent pr	rial Reporting	iearch for studies:	Advanced Search Hel	p Studies by Top	pic Glossary
Ind Studies A A me > Find Studies > Clinical Trial to his study has been ponsor: lational Center for information provided ational Center for R Full Text View Purpose goal of this study is	tional institutes of Health bout Clinical Studies Submit St bout Clinical Studies Submit St bout the Complications of completed. r Research Resources (NCRR) by: tesearch Resources (NCRR) Tabular View No Study Results to aggressively treat insulin resistance about the early manifestations of insulin	And its clinical manifestations wir resistance, its treatment, and its	bout This Site	abetes) cord lildhood, and to preven nd type-2 diabetes thro	the subsequent pr ugh parallel in-vivo	rial Reporting	iearch for studies:	Advanced Search Hel	p Studies by Top	pic Glossary
Ind Studies A A me > Find Studies A A me > Find Studies > Clinical Trial to Clinical Trial to Clinical Center for A Store Store Stational Center for R Full Text View Purpose galot this study is	tional institutes of Health bout Clinical Studies Submit Si bout Clinical Studies Submit Studies Submit Si bout Clinical Studies Submit Si bout Clinical Studies Submit Si bout Clinical Studies Submit	And its clinical manifestations wir resistance, its treatment, and its	bout This Site	abetes) cord lildhood, and to preven nd type-2 diabetes thro	the subsequent pr	rial Reporting	impaired glucose to	Advanced Search Hel	p Studies by Top	pic Glossary
Ind Studies A A me > Find Studies > Clinical Trial to his study has been ponsor: lational Center for information provided ational Center for R Full Text View Purpose goal of this study is	tional institutes of Health bout Clinical Studies Submit St bout Record Detail Prevent the Complications of n completed. r Research Resources (NCRR) by: escearch Resources (NCRR) Tabular View No Study Results to aggressively treat insulin resistance about the early manifestations of insulin Condition	And its clinical manifestations wir resistance, its treatment, and its	bout This Site - cluding Type-2 Dia How to Read a Study Red hen they first appear in ch relationship to obesity ar	abetes) cord ildhood, and to preven nd type-2 diabetes thro Int	the subsequent pr ugh parallel in-vivo	rial Reporting	impaired glucose to	Advanced Search Hel	p Studies by Top	pic Giossary
Ind Studies A A me > Find Studies > Clinical Trial to This study has been iponsor: Valional Center for Full Text View Purpose goal of this study is we will learn more a dy Type: Interven y Design - Allocata	tional Institutes of Health bout Clinical Studies Submit St bout Clinical Studies Submit St Study Record Detail Prevent the Complications of completed. r Research Resources (NCRR) by: esearch Resources (NCRR) Tabular View No Study Results to aggressively treat insulin resistance about the early manifestations of insulin Conditional	And its clinical manifestations wir resistance, its treatment, and its	cluding Type-2 Dia cluding Type-2 Dia How to Read a Study Red hen they first appear in ch relationship to obesity ar Drug: Metformin Procedure: skin biopsy Behaviorat: diet and exe Drug: pioglitazone	abetes) cord ildhood, and to preven nd type-2 diabetes thro Int	the subsequent pr ugh parallel in-vivo	rial Reporting	impaired glucose to	Advanced Search Hel	p Studies by Top	pic Glossary
Ind Studies ~ A me > Find Studies > Clinical Trial to This study has been sponsor: Vational Center for formation provided vational Center for R Full Text View Purpose e goal of this study is we will learn more a dy Type: Intervent dy Type: Intervent Masking Primary	tional institutes of Health bout Clinical Studies Submit St Study Record Detail Prevent the Complications of completed. r Research Resources (NCRR) by: lesearch Resources (NCRR) Tabular View No Study Results to aggressively treat insulin resistance about the early manifestations of insulin Condition Conditio Conditio Condition Condit	Addes Resources A	bout This Site -	abetes) cord ildhood, and to preven nd type-2 diabetes thro Int	the subsequent pr ugh parallel in-vivo	rial Reporting	impaired glucose to	Advanced Search Hel	p Studies by Top	pic Giossary

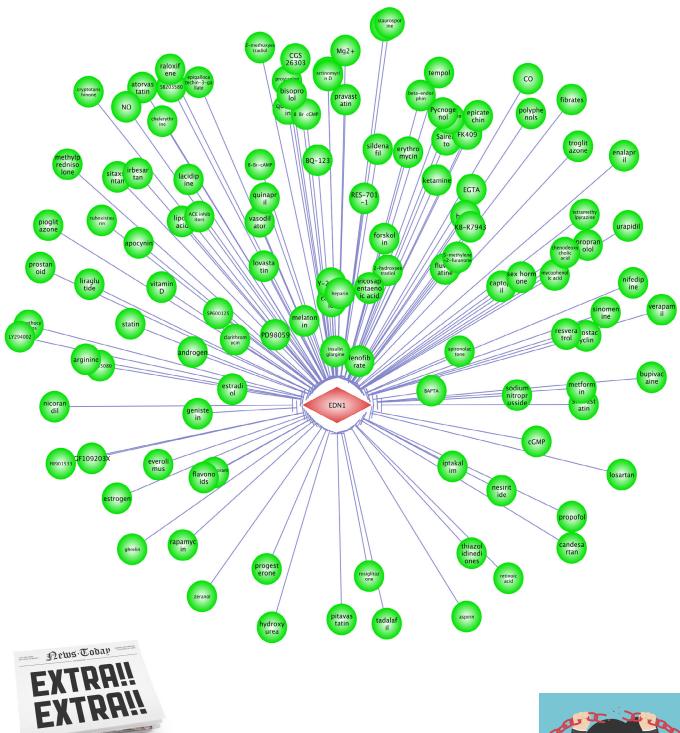
Metformin Hydrochloride


Metformin Hydrochloride is the hydrochloride salt of the biguanide metformin with antihyperglycemic and potential antineoplastic activities. Metformin inhibits complex I (NADPH:ubiquinone oxidoreductase) of the mitochondrial respiratory chain, thereby increasing

the cellular AMP to ATP ratio and leading to activation of AMP-activated protein kinase (AMPK) and regulating AMPK-mediated transcription of target genes. This eventually prevents hepatic gluconeogenesis, enhances insulin sensitivity and fatty acid oxidation and ultimately leads to a decrease in glucose levels. **Metformin may exert antineoplastic effects through AMPKmediated or AMPK-independent inhibition of mammalian target of rapamycin** (mTOR), which is up-regulated in many cancer tissues. Furthermore, this agent also inhibits tumor cell migration and invasion by inhibiting matrix metalloproteinase-9 (MMP-9) expression, which is mediated through the suppression of transcription activator protein-1 (AP-1) activation.

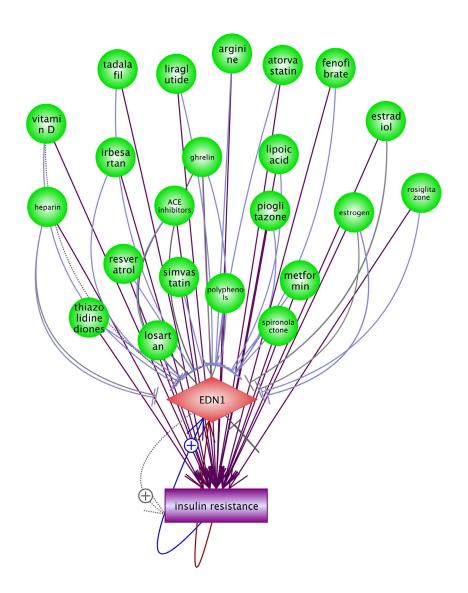

Now, map Small Molecule Inhibitors of EDN1, which are also in clinical trials for insulin resistance.

(Hint: Copy all small molecules from insulin resistance clinical trials, go to small molecule inhibitors of EDN1 pathway, select Clipboard Content, highlight selection in yellow and then drag these to one side.)



Now, you can easily see which small molecule inhibitors of EDN1 are in clinical trials or not.

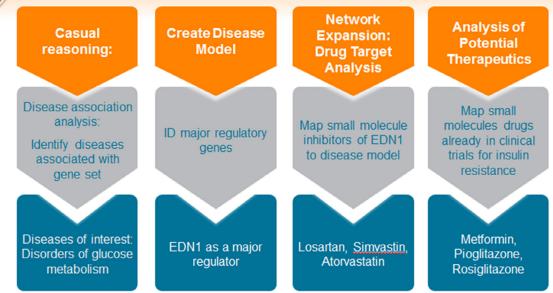
Isolate small molecule inhibitors of EDN1 not already in clinical trials for insulin resistance. (Hint: Simply delete the right hand side of the small molecule inhibitors of EDN1 pathway above.)



For extra credit! Identify three drugs that are strong inhibitors of EDN1 (but not in clinical trials for insulin resistance). Identify their current indication (i.e. what disease they are currently used to treat). Find three different disease-specific drugs that could be repurposed for the treatment of insulin resistance.

And finally, map...

Small Molecules in Clinical Trials for the treatment of Insulin Resistance mapped to EDN1 small molecule inhibitors only.


(Hint: Now simply delete the left hand side of the pathway above. Then, re-associate both clinical trial and expression relation data. It will be important for you to get creative!)

Time for a quick review!

Up-regulated genes identified from experimental data

Study Questions 7

- 1. Which file types should an adventurer use in his quest to master the Pathway Studio Import feature?
- 2. What options do you have for the combination of two pathways?
- 3. Identify top protein (by # of references) that mediates the translocation of EDN1. (Hint: MolTransport)
- Identify the top small molecule (by # of references) that mediates the translocation of EDN1.
 (Hint: MolTransport)
- 5. How many small molecule inhibitors of Crohn's disease are also in clinical trials (for Crohn's disease)? Identify the top small molecule (by **#** of references).
- 6. List the top five small molecules (by number of clinical trials) for Crohn's disease.

For Protein/Small Molecule Transport, How Do I ...

Exercise 7.1: What protein mediates the translocation of a protein or small molecule?

Identifies proteins involved in the translocation of a protein or small molecule target.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein and Small Molecules" Relations: Select "MolTransport"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 7.2: What small molecule mediates the translocation of a protein?

Identifies small molecules involved in the translocation of a protein target.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Small Molecules Relations: MolTransport

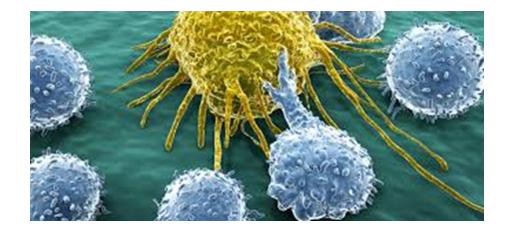
Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 8

Cancer Immunotherapy

Contents

8.1	Introduction	134
8.2	Secreted Protein of Melanoma Cells	137
8.3	Cells Inhibited by Melanoma Proteins	141
8.4	Cells Inhibiting Melanoma Cells	146
8.5	Integrating Three Data sets	147
8.6	Closing the Loop!	148
8.7	Determining the Most Connected Entities	149
8.8	TGFB1 as a Therapeutic Target	151
8.9	TGFB1 in Clinical Trials	152
8.10	Fresolimumab	154


Study Questions 8

How Do I Proteins/Small molecules involved in chemical interactions:	158
	-

Exercise 8.1: What enzymes are involved in a chemical reaction with a small molecule?......159

8.1 Introduction

Cancer Immunotherapy

Immunotherapy has proven to be one of the most exciting new areas for oncology.

So what is it?

Well, cancer immunotherapy has arisen from the recognition that the human immune system does have effective defensive measures against malignant cells.

Knowledge of the basic mechanisms of the immune system as it relates to cancer has been increasing rapidly.

It is thought that the immune system is able to perceive and eliminate some tumors early on in their development.

The ability of T cells to constantly survey host tissues for newly transformed cells and to control and/or eliminate human cancers is known as **the cancer immunosurveillance hypothesis.**

So what's the problem?

Well unfortunately, some tumor cells can escape immunosurveillance and adapt counter measures. This entire process of surveillance and escape is known as the **cancer immunoediting hypothesis** (see below).

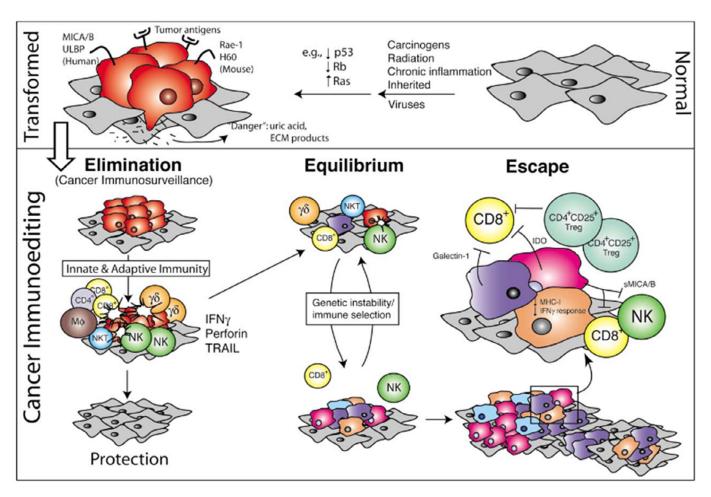
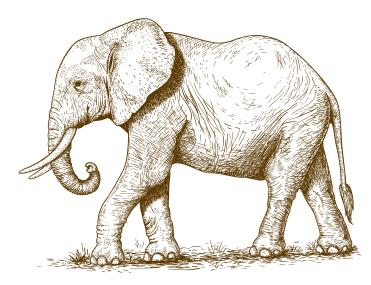



Figure 1. The Three Phases of the Cancer Immunoediting Process

Normal cells (gray) subject to common oncogenic stimuli ultimately undergo transformation and become tumor cells (red) (top). Even at early stages of tumorigenesis, these cells may express distinct tumor-specific markers and generate proinflammatory "danger" signals that initiate the cancer immunoediting process (bottom). In the first phase of elimination, cells and molecules of innate and adaptive immunity, which comprise the cancer immunosurveillance network, may eradicate the developing tumor and protect the host from tumor formation. However, if this process is not successful, the tumor cells may enter the equilibrium phase where they may be either maintained chronically or immunologically sculpted by immune "editors" to produce new populations of tumor variants. These variants may eventually evade the immune system by a variety of mechanisms and become clinically detectable in the escape phase.

The immunobiology of cancer immunosurveillance and immunoediting. Dunn GP, Old LJ, Schreiber RD. Immunity. 2004 Aug;21(2):137-48. Review. How tumor cells escape immunosurveillance and the many different counter measures now under development is a BIG subject.

In general, contemporary immunotherapies can be classified into two types: active or passive. Active therapies attempt to induce an immune response in otherwise non-responsive patients. These include cytokines (e.g. IL-2), immunomodulatory mABs (e.g. checkpoint inhibitors), and cancer vaccines.

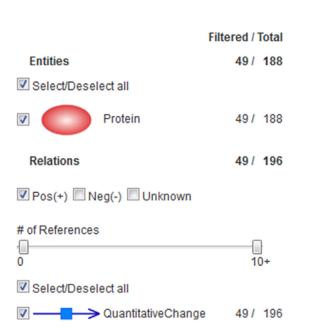
Passive therapies stimulate a patient's intrinsic immune response and include cell-based therapies (e.g. CAR-T), bispecific and multispecific antibodies (e.g. Blinatumomab CD3-CD19), oncolytic viruses (e.g. T-Vec), and tumor-targeting mABs (e.g. Rituximab, anti-CD20).

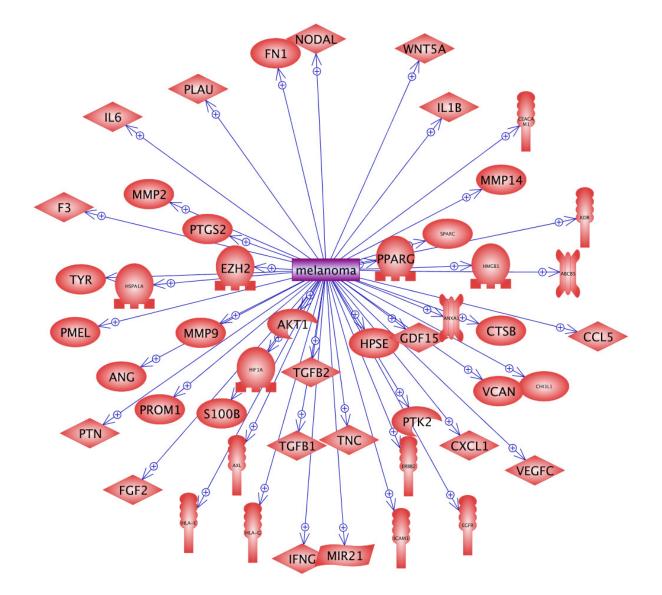
8.2 Secreted Protein of Melanoma Cells

The workflow presented here is based on the observation that at least one of the many ways that cancer cells escape immunosurveillance is through the secretion of protein products, which down-regulate critical cellular components of the immune system.

Shall we begin?!!!

Step 1: Search for the disease "melanoma" and place it on the pathway work space.


melanoma


Step 2. Now let's "Add"

Tool category: Advanced Expand Pathway Tool Direction: Downstream Protein: QuantitativeChange (QuantitativeType = secretion)

Use the Interactive Network Filter to select only positive relations.

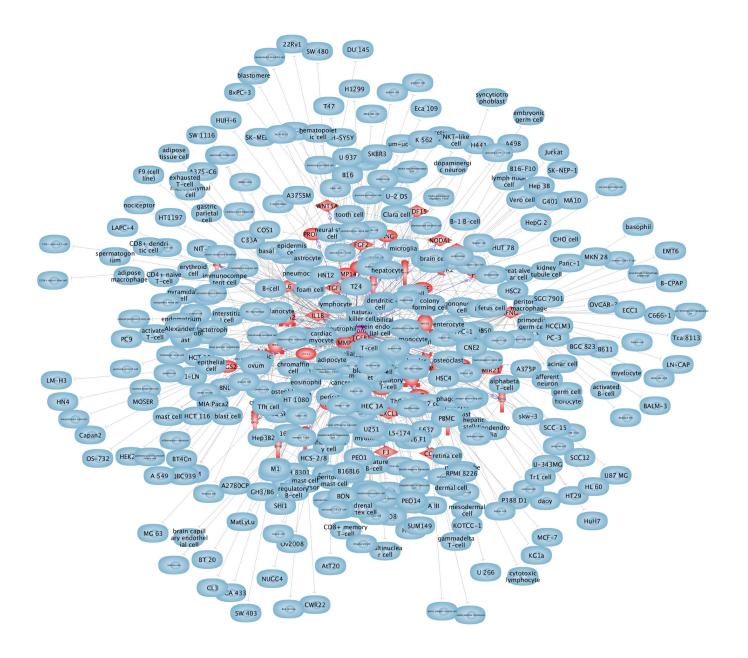
This should result in about 50 proteins.

It may be obvious, but it's always a good idea after creating a network to take the time to examine a sample of the relations to ensure that the question you thought you were asking has indeed been answered properly. In this case, you were looking for proteins known to be secreted by melanoma cells. The pop-up box for CCL5 confirms the search strategy (Hint: Another way to look at this quickly and even more comprehensively is to go to the Relation Table View.)

8.3 Cells Inhibited by Melanoma Proteins

Now, go find all the cell types that are inhibited by these melanoma-secreted proteins.

First, select "Entities by Type," and then "Protein."


Then, go to add "Network Builder," and choose "Advanced Expand Pathway Tool."

Next, select "Downstream" (Hint: In effect, this tells the software that you are interested in finding cells that are inhibited by the melanoma proteins.).

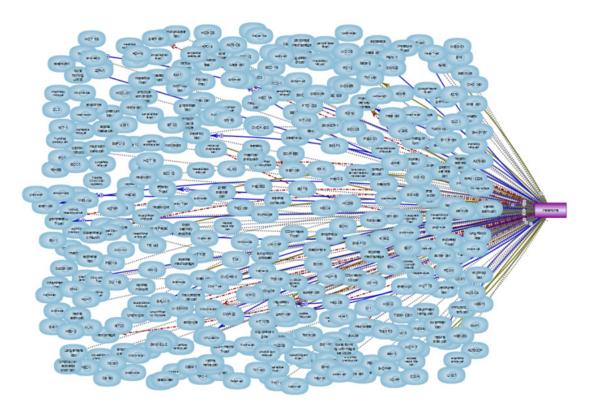
Finally, select "Cell" (for Entities), "Regulation" (for Relations), and "Effect"= "negative."

You found nearly 400 different cell types! These are all cells that are inhibited by the melanoma-secreted proteins.

OK, this is where it gets a little tricky!

We need to find out which of these cells has activity against melanoma disease (in other words, identify a specific subset of these cells).

There are several different ways to approach this problem, and the one below might be the simplest (we hope!).


First step, make sure you've saved your work to this point, and then copy and paste just the cells and melanoma disease into a new workspace ("Create New Pathway").

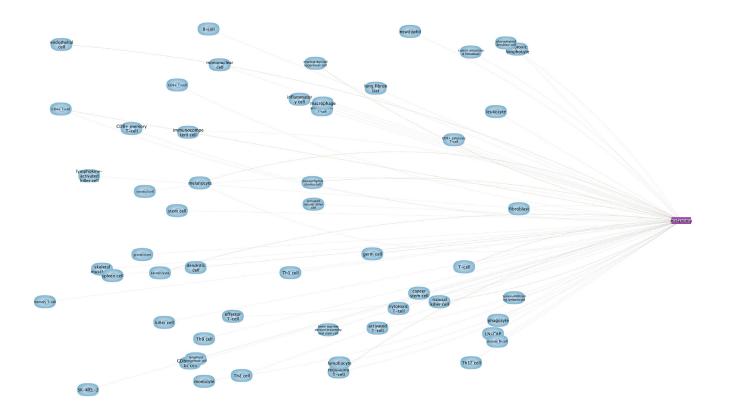
It should look something like this:

Select melanoma disease and add "Relations between Selected and Unselected."

And now it's time , once again, for....

Interactive Network Filter	Save a Copy Finish Cancel	🗱 View 👻 🍥 🦳
Entities 39. ♥ Select/Desslect all 99 ♥ ● Cell 39 ♥ ● Disease 19 ♥ ● ● 0 1000000000000000000000000000000000000		

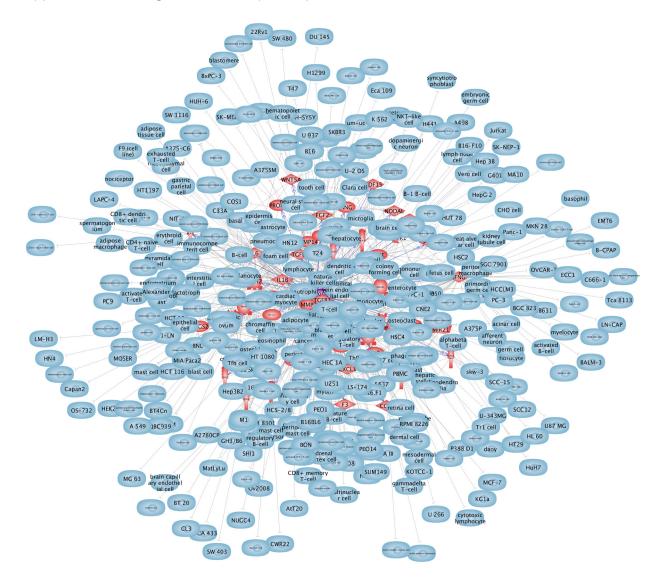
	Interactive Network Filter				
		Filtered / Total			
	Entities	392/ 392			
	Select/Deselect all				
	Cell	391/ 391			
	Disease	1/ 1			
	Relations	49/159			
->	🔲 Pos(+) 🗹 Neg(-) 🔲 Unknown				
	# of References	_			
	0	10+			
	Select/Deselect all				
	🗐 🔶 Biomarker	0/ 17			
	🕅 — 🗧 —> QuantitativeChange	0/ 28			
\rightarrow	✓> Regulation	49/ 98			
	🔲 ————————————————————————————————————	0/ 16			


 Select only Neg(-) as the effect, and Regulation as the relation.

2. Click "Finish".

3. Select "Unconnected Entities".

4. Edit, Remove.

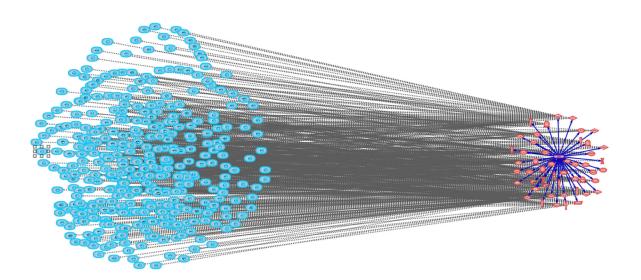

8.4 Cells Inhibiting Melanoma Cells

Now, the goal is to use this identified subset of cells to modify our earlier melanoma

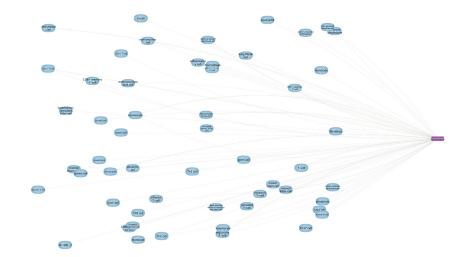
-> secreted proteins-> negatively regulated cells.

At the end of the day, you only want cells that have known inhibitory action against melanoma.

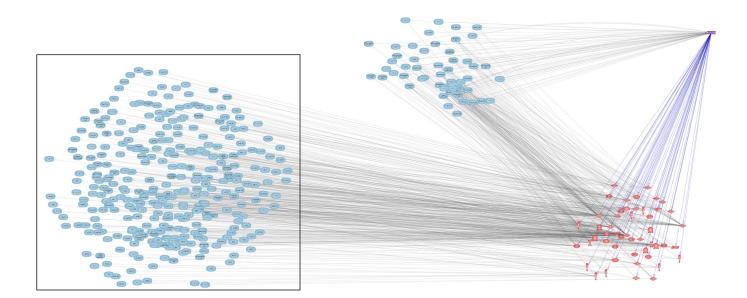
So now, copy these cells and go back to this pathway:

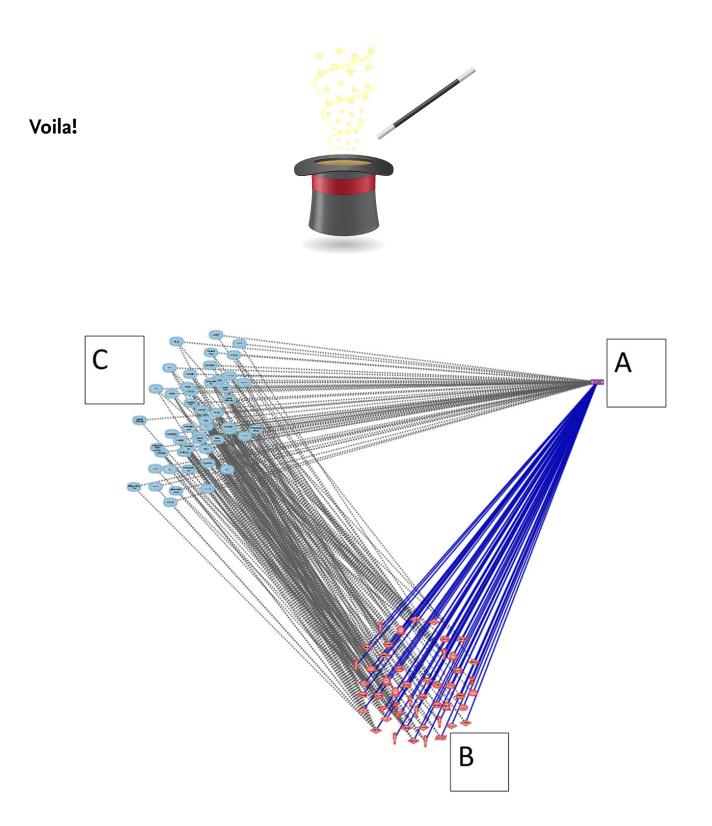


8.5 Integrating Three Data sets


But first, you need to make some big moves!

Select cells and drag them far to the left, like so:

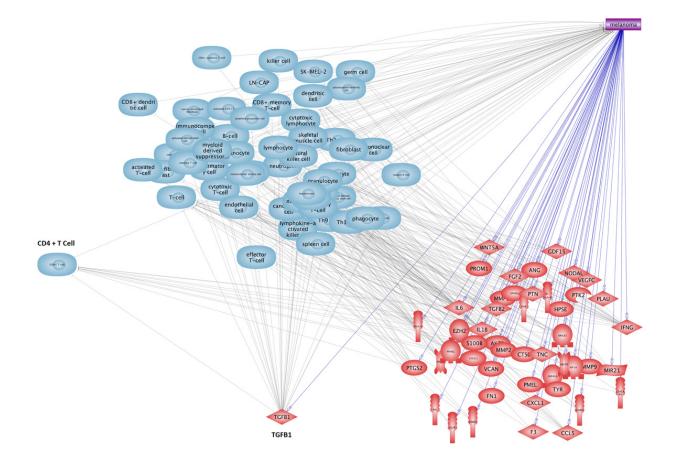

Next, select all and copy from here:



Return to the main pathway, paste and then drag the selected cells up and out of the way, like this:

8.6 Closing the Loop!

Now, you can select and remove the unwanted cells (on the left).


See how you just closed the loop? Melanoma (A) secreted proteins (B) inhibit cells (C) that inhibit melanoma (A)!

Now we can...analyze your data.

Drill Down!

We can see that some entities are highly connected (e.g. TGFB1 and CD4+ T cells).

Let's begin to explore this systematically by going to the "View Entities" Table,


Sort descending on column named "Local Connectivity" (if not there go to Customize table to select and display that column).

Name	Object Type	Total Connectivity	Local Connectivity
🛉 🕈 melanoma	Disease	7718	98
🗌 🍪 TGFB1	Protein	15758	28
🗌 🍪 IFNG	Protein	13019	21
🗌 🥹 IL6	Protein	18336	19
🗌 🐳 T-cell	Cell	12715	18
🗌 😢 HLA-G	Protein	1181	12
🗌 😣 PPARG	Protein	8178	12
🗌 🐳 neutrophil	Cell	8458	12
🗌 🙀 Th1 cell	Cell	3470	12
🗌 🐳 CD4+ T-cell	Cell	4763	12
🗌 🐳 dendritic cell	Cell	6608	11
🗌 🥹 IL1B	Protein	13355	11
🗌 🛞 PTGS2	Protein	9926	10
🗌 🍪 TGFB2	Protein	2703	10

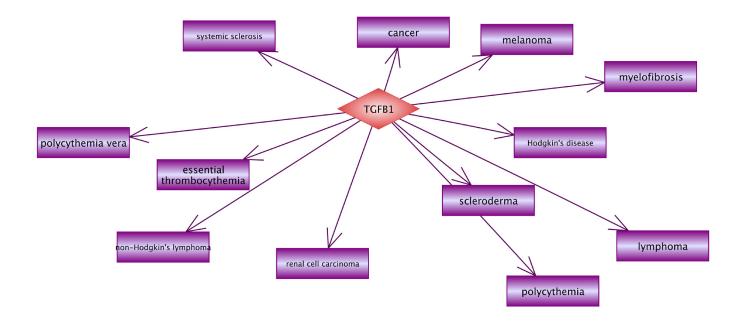
From this we can see that TGFB1 is indeed the most highly connected protein (CD4+ T-cells are actually the fourth most connected cell type and connect with TGFB1 as well).

Let's take a closer look at this! (can you figure out how? Hint: simply delete all proteins, other than TGFB1, and melanoma disease, and then remove unconnected entities).

8.8 TGFBI as a Therapeutic Target

From this we can see that TGFB1 is indeed the most highly connected protein (CD4+ T-cells are actually the fourth most connected cell type and connect with TGFB1 as well).

8.9 TGFBI in Clinical Trials


Has TGFB1 ever been investigated as a target point for therapeutic intervention in a clinical trial?

Start a new pathway and find out!

	Network Builder					×
	Step 3: Select Advanced Fil	ters				
	Entities Filt	er		Relations	Filter	
	Cell			Binding		-
	Cell Process			Biomarker		
	Clinical Parameter			CellExpression		
	Complex			ChemicalReaction		
GFB1	✓ Disease	Add Condition		ClinicalTrial	Add Condition	E
	Functional Class			DirectRegulation		
	Protein			Expression		
	Small Molecule			FunctionalAssoc		
	Treatment			GeneticChange		
				miRNAEffect		
				MolSynthesis		
				MolTransport		
				PromoterBinding		-
	Check All Uncheck A	II Reset	C	heck All Unch	eck All Reset	
	« Back Next »	Reset All Filters			Cance	el

It looks like TGFB1 has been targeted across a broad range of disease indications.

	Step6a 👋 🐴 Step	1a × 🖾 Step2a × 🖾 Step3a × 🖄 New Pathway ×	
🚽 Save 🔹 🍸 Filters 🔹 🋄 View 🔹 📃 Sel	ect 🔹 🗎 Edit 🔹 🖌	🗘 Undo 🔹 💽 Export 👻	Search
1 Selected Deselect All			
Relation	Object Ty # of	f Refe Selected Sentences E F C C	1 F (1 Date Created
— TGFB1> essential thrombocythemia	ClinicalTrial 1	Phase I Study of GC1008 in Patients With Primary Myelofibrosis (PMF), Po	F 2017-02-20 19
TGF81> Hodgkin's disease	ClinicalTrial 2	Administration of TGF-b Resistant LMP2A-Specific Cytotoxic T-Lymphocyt	/ 2017-02-21 07
TGF81> melanoma	ClinicalTrial 1	A Phase 1 Study of the Safety and Efficacy of GC1008: A Human Anti Tran	/ 2017-02-11 23
TGFB1> myelofibrosis	ClinicalTrial 1	Phase I Study of GC1008 in Patients With Primary Myelofibrosis (PMP), Po	F 2017-02-11 18
TGF81> non-Hodgkin's lymphoma	ClinicalTrial 1	Administration of TGF-b Resistant LMP2A-Specific Cytotoxic T-Lymphocyt	/ 2017-02-12 07
TGF81> lymphoma	ClinicalTrial 1	Administration of TGF-b Resistant LMP2A-Specific Cytotoxic T-Lymphocyt	/ 2017-02-11 20
TGFB1> polycythemia vera	ClinicalTrial 1	Phase I Study of GC1008 in Patients With Primary Myelofibrosis (PMF), Po	F 2017-02-20 16
TGFB1> cancer	ClinicalTrial 1	Administration of Her2 Chimeric Receptor and TGFbeta Dominant Negati	/ 2017-02-11 15
— TGFB1> polycythemia	ClinicalTrial 1	Phase I Study of GC1008 in Patients With Primary Myelofibrosis (PMP), Po	F 2017-02-21 08
TGFB1> renal cell carcinoma	ClinicalTrial 2	A Phase 1 Study of the Safety and Efficacy of GC1008: A Human Anti Tran	/ 2017-02-12 12
4 4 Page 1 of 1 ▷ ▷ 49		Items per page	90 Displaying 1 - 1
ClinicalTrial TGFB1> melanoma	hase 1 Study of the	Safety and Efficacy of GC1008: A Human Anti Transforming Growth Factor-beta (TGFβ) Iced Renal Cell Carcinoma or Malignant Melanoma	Monoclonal Antibod
Properties A P References (1) [1] in P	ationts With Advan		
References (1) [1] in P Other Properties			
References (1) [1] in P Other Properties > Collections Rel	evant Sentences	Other available information Status: Completed, Phase: Phase 1, StudyType: Interventional, Start: September 2006, NCT I	

We even have a clinical trial involving melanoma.

8.10 Fresolimumab

Can you find more information about the TGFB1 inhibitor (GC1008) currently being investigated for the treatment of melanoma in clinical trials? (Hint: Search for GC1008 in the Query box under Properties, click External Identifiers, CAS ID, and Open in ChemID plus.)

NIH U.S. National Library of Medicine TOXICOLOGY Data NETWORK	Help FAQs TOXNET Fact Sheet Training I	Manual & Schedule		
TOXNET > ChemIDplus > Substance	Registry Number 🗨 equals 💽 948564-73-6	Search		
ChemIDplus A TOXNET DATABASE Lite • Browse • Advanced	Modify Query Search History Switch to Su	Immary View		
Substance Name: Fresolimumab [USAN:INN] RN: 948564-73-6 UNII: 375142VBIA				
Note An anti-TGF-beta antibody in phase I clinical trials (2011) for treatment-	-resistant primary focal segmental glomerulosclerosis.	*		
NCI: A pan-specific, recombinant, fully human monoclonal antibody directed against human transforming growth factor (TGF) -beta 1, 2 and 3 with potential antineoplastic activity. Fresolimumab binds to and inhibits the activity of all isoforms of TGF-beta, which may result in the inhibition of tumor cell growth, angiogenesis, and migration. TGF-beta, a cytokine often over-expressed in various malignancies, may play an important role in promoting the growth, progression, and migration of tumor cells. (NCI Thesaurus)				

Wonder how this clinical trial turned out? It's completed.

Just go to the bottom of the clinical trial record page.

More Information

Additional Information:

Related Info 💷

Publications automatically indexed to this study by ClinicalTrials.gov Identifier (NCT Number):

Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA, Lawrence DP. Phase I study of GC1008 (fresolimumab): a human anti-tra factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014 Mar 11;9(3):e90353. doi: 10.1371/journal.pone.0090353. eCollection 2014 Mar 11.

Berzofsky JA, Wood LV, Terabe M. Cancer vaccines: 21st century approaches to harnessing an ancient modality to fight cancer. Expert Rev Vaccines. 2013 Oct 10.1586/14760584.2013.836906.

Responsible Party:	Genzyme, a Sanofi Company			
ClinicalTrials.gov Identifier:	NCT00356460	History of Changes		
Obsolete Identifiers:	NCT00381745			
Other Study ID Numbers:	GC100800305			
Study First Received:	July 24, 2006			
Last Updated:	March 17, 2014			

It looks like it helps!

PLoS One. 2014 Mar 11;9(3):e90353. doi: 10.1371/journal.pone.0090353. eCollection 2014.

Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma.

Morris JC¹, Tan AR², Olencki TE³, Shapiro GI⁴, Dezube BJ⁵, Reiss M², Hsu FJ⁶, Berzofsky JA¹, Lawrence DP⁷.

Author information

Abstract

BACKGROUND: In advanced cancers, transforming growth factor-beta (TGF β) promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGF β monoclonal antibody that neutralizes all isoforms of TGF β . Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma.

METHODS: In this multi-center phase I trial, cohorts of patients with previously treated malignant melanoma or renal cell carcinoma received intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days 0, 28, 42, and 56. Patients achieving at least stable disease were eligible to receive Extended Treatment consisting of 4 doses of GC1008 every 2 weeks for up to 2 additional courses. Pharmacokinetic and exploratory biomarker assessments were performed.

RESULTS: Twenty-nine patients, 28 with malignant melanoma and 1 with renal cell carcinoma, were enrolled and treated, 22 in the dose-escalation part and 7 in a safety cohort expansion. No dose-limiting toxicity was observed, and the maximum dose, 15 mg/kg, was determined to be safe. The development of reversible cutaneous keratoacanthomas/squamous-cell carcinomas (4 patients) and hyperkeratosis was the major adverse event observed. One malignant melanoma patient achieved a partial response, and six had stable disease with a median progression-free survival of 24 weeks for these 7 patients (range, 16.4-44.4 weeks).

CONCLUSIONS: GC1008 had no dose-limiting toxicity up to 15 mg/kg. In patients with advanced malignant melanoma and renal cell carcinoma, multiple doses of GC1008 demonstrated acceptable safety and preliminary evidence of antitumor activity, warranting further studies of single agent and combination treatments.

TRIAL REGISTRATION: Clinicaltrials.gov NCT00356460.

And that brings you to the end of your journey for today!

Before we go, what did we learn today?

- How to use QuantitativeChange to find proteins secreted because of melanoma disease.
- How to find cells inhibited by those secreted proteins.
- How to identify a subset of these cells that inhibit melanoma.
- Manipulate large networks to "close the loop": Melanoma (A) secreted proteins (B) inhibit cells (C) which inhibit melanoma (A).
- Identification of clinical trials for specific diseases which involve TGFB1.
- Evaluation of clinical trial results for melanoma and a monoclonal antibody directed against TGFB1.

Study Questions 8

- Identify the top five proteins (by # of references) that are secreted by melanoma. (Hint: Add: QuantitativeChange; QuantitativeType = secretion.)
- Identify all cells that were inhibited by the five proteins from Question 1. How many of them? (Hint: Add: Regulation; Effect = negative.)
- 3. Identify all cells that inhibit melanoma. How many of them? (Hint: Negative regulation)
- 4. Find overlap of the cells from Questions 2 and 3. How many of them?
- 5. Identify the top five cells (by # of references) from Question 4 that are connected to the immune response.

For Proteins/Small Molecules Involved in Chemical Interactions, How Do I ...

Exercise 8.1: What enzymes are involved in a chemical reaction with a small molecule?

Identifies functional classes and proteins that catalyze chemical reactions of small molecules. Most metabolism enzymes in the metabolism pathways are represented by functional diseases.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein, functional classes" Relations: Select "ChemicalReaction"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 9

Finding Support for Your Hypothesis

Contents

Introduction	.161
A Real World Example	. 162
Direct Interactions	163
Shortest Path Between Two Entities	166
Show the Legend	168
Adjust Font and Object Size	169
Save the Image	170
Export Relation Table	171
Reality Check	173
	A Real World Example Direct Interactions Shortest Path Between Two Entities Show the Legend Adjust Font and Object Size Save the Image Export Relation Table

Study Questions 9

176

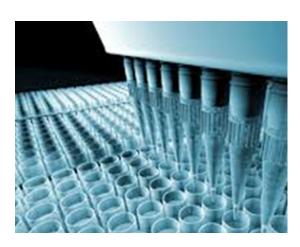
How Do I... Protein/Small Molecule associations with Diseases and Cell Processes:

Exercise 9.1:	What proteins are known to be associated with a disease or cellular process?	.177
Exercise 9.2:	What small molecules are associated with a disease or cellular process?	.177
Exercise 9.3:	What proteins are known to change in expression, activity or abundance in a disease?	.178
Exercise 9.4:	What small molecules are known to change in abundance in a disease?	178
Exercise 9.5:	What proteins with genetic mutations are associated with a disease?	179
Exercise 9.6:	What proteins or small molecules are diagnostic for a disease?	179
Exercise 9.7:	What proteins or small molecules are prognostic for a disease?	80
Exercise 9.8:	What protein phosphorylation/dephosphorylation events are associated with a disease?	80
Exercise 9.9:	What protein/gene splice variants are associated with a disease?	181

9.1 Introduction

Let's say you have performed an assay or are analyzing genomic high-throughput data and now you have the answer!

But you'd like to know whether this finding is novel (i.e. not previously noted in the scientific literature)


But if it is novel, that's wonderful, but you now have a new problem!

How to get literature support for a novel finding? (since by definition, there will be no direct mention of this finding in the current literature).

Well here's a way!

Let's say you've performed a massive Genome Wide Association Study (GWAS)

In genetics, a genome-wide association study (GWA study, or GWAS...is an examination of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait.

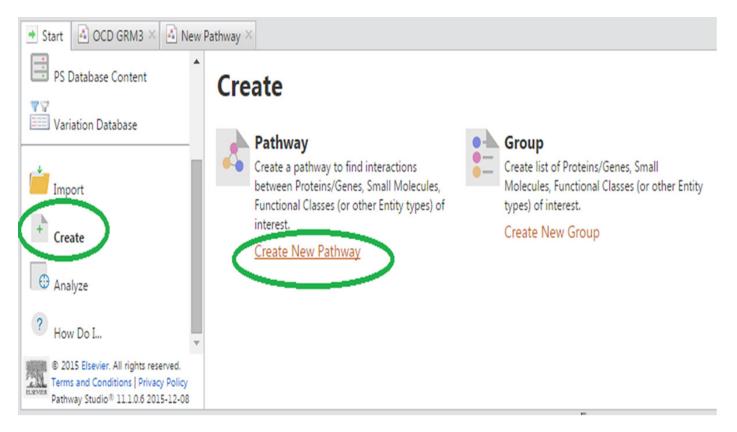
Wikipedia contributors. "Genome-wide association study." Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, 9 Mar. 2017. Web. 24 Mar. 2017.

9.2 A Real World Example

You've done a lot of work, getting the samples, performing the assay, processing and analyzing the data, and now you have an answer.

And it is.... Glutamate Metabotropic Receptor 3

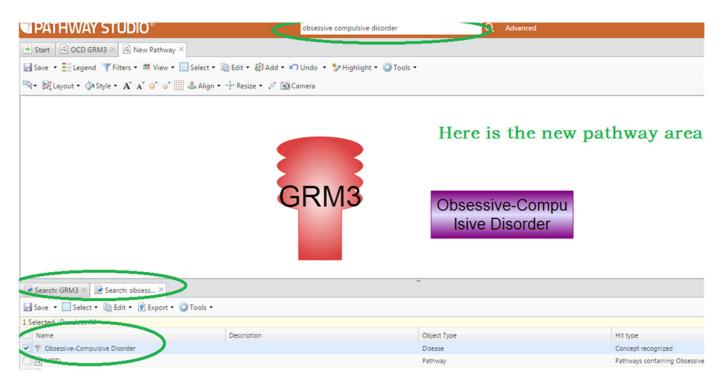
Obsessive-Compu Isive Disorder


Glutamatergic neurotransmission is involved in most aspects of normal brain function.*

*Based on a real world example

So, let's go to Pathway Studio and look for any information which might connect the GRM3 gene/ protein with Obsessive-Compulsive Disorder (OCD):

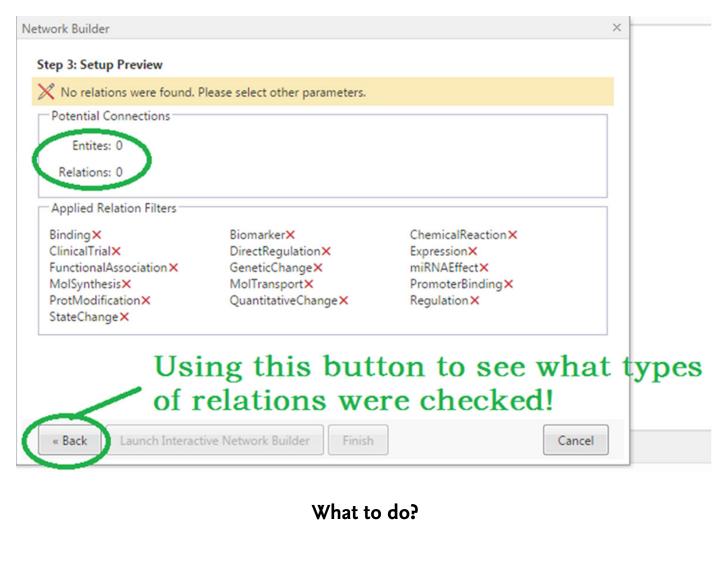
9.3 Direct Interactions


Step 1: Open a new Pathway...

Step 2. Search and copy the item...

R - K Layout - A A o o	Select • ⓑ Edit • क़Add • ∽ Undo • ≫ Highligh ♣ Align • ∲ Resize • ↗ @ Camera	Q Advanced earch here for the tem you wanna heck
	• 🗿 Tools 🕶	-
Name	Description	Object Type
GRM3	Ctrl+C tor, metabotropic 3	Protein
Proteins Involved in Patho	n/ Data	Pathway
GRMz=4/6-8 (presynaptic)		Pathway
MDD Export Resu		Pathway
gene2test_wei_Dec23 2015 🖉 Enrichment		Pathway
🔲 🗟 gene2testscz_wei_Dec23 2 👬 Network Bu	ilder	Pathway

Step 3. Paste GRM3 to 'new Pathway area' and repeat the process for OCD.

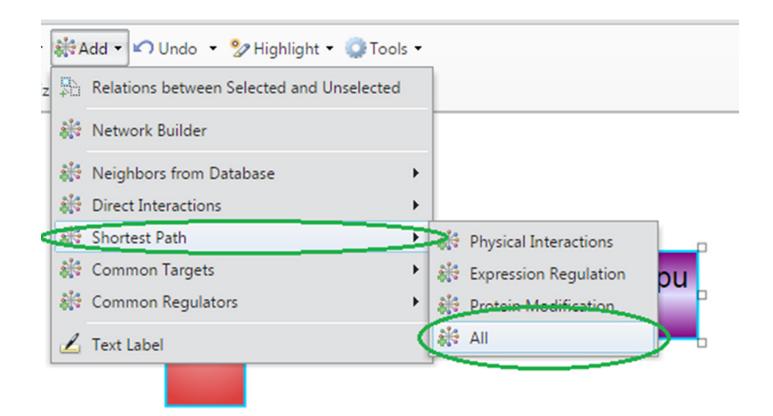


Step 4. Select both items and the press button 'Add'...

💌 Start 🚺 New Pathway ×			
🔒 Save 🔹 🗄 Legend 🍸 Filters 🔹 🖉 View 🔹 🗌 Select 🔹 🏢 Edit 🔹	🗱 Add 🔹 🖍 Undo 🔹 🦻 Highlight 🔹 🥥 Tools 🔹		
🖎 • 🙀 Layout • 🔌 Style • 🗛 🖌 🍑 💣 🚔 Align • 🕂 Res	Relations between Selected and Unselected		
	👬 Network Builder		
	Neighbors from Database		
		Representation Physical Interactions	
		🗱 Expression Regulation	
	🗱 Common Targets 🔹 🕨	Rotein Modification	
	Common Regulators	👬 All	obsessive-compul
	🗱 Common Binding Partners 🔹 🕨	RM3	sive disorder
	🖌 Text Label		

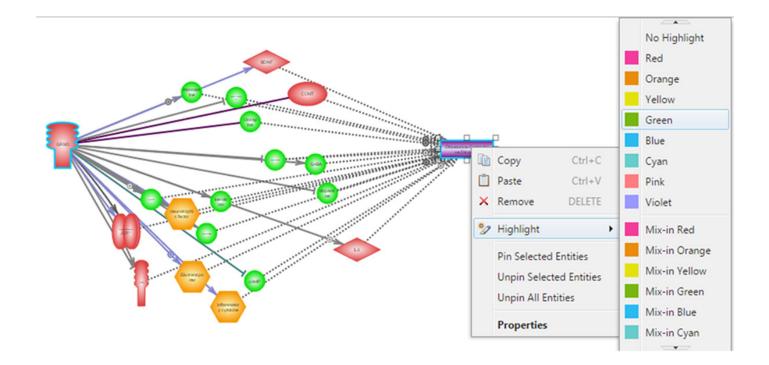
Step 5. The pop-up window shows the results:

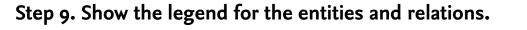
Entities: Zero and **Relations:** Zero indicates that no direct connection between GRM₃ and OCD has been detected in the literature!

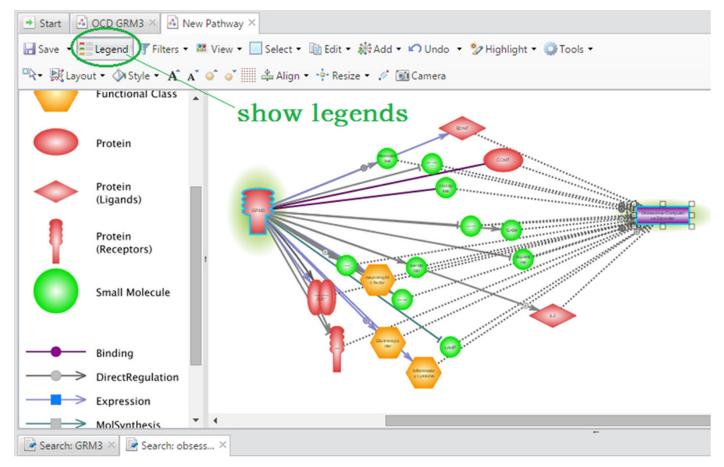

9.4 Shortest Path Between Two Entities

Let's look for the "shortest path" between two entities.

(Note: If there is a direct connection between two entities then that is the shortest path; if not, then the software will look for connections requiring one intervening step, increasing steps as necessary until a connection is made.)

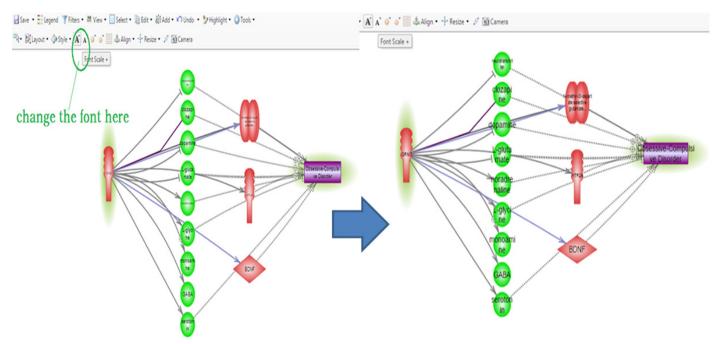

Step 6. Select both entities (GRM3 and OCD) and click on "Add, Shortest Path, All".


Entities: 18 and Network Builder Relations: 41 Step 5: Setup Preview indicates that the Potential Connections indirect connections Entites: 18 between GRM3 and Relations: 41 OCD involves a total **Applied Entity Filters** of 18 Entities and 41 Protein**X** Complex × Functional Class× Small Molecule× Relations. **Applied Relation Filters** Regulation X Binding× ProtModification× PromoterBinding X Expression× MolSynthesis X ChemicalReaction × MolTransport X DirectRegulation X miRNAEffect× Here to go and manage the relationship types to study « Back Launch Interactive Network Builder Finish Cancel

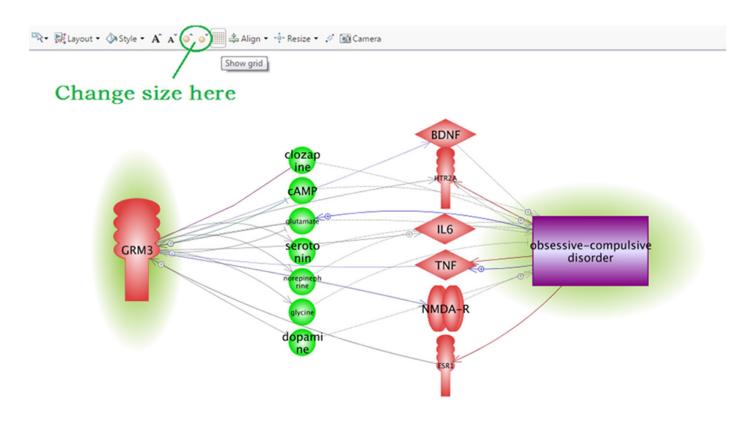

Step 7. Search results for 'Shortest Path'.

Step 8. Click 'Finish' and highlight GRM3 and OCD.

9.5 Show the Legend

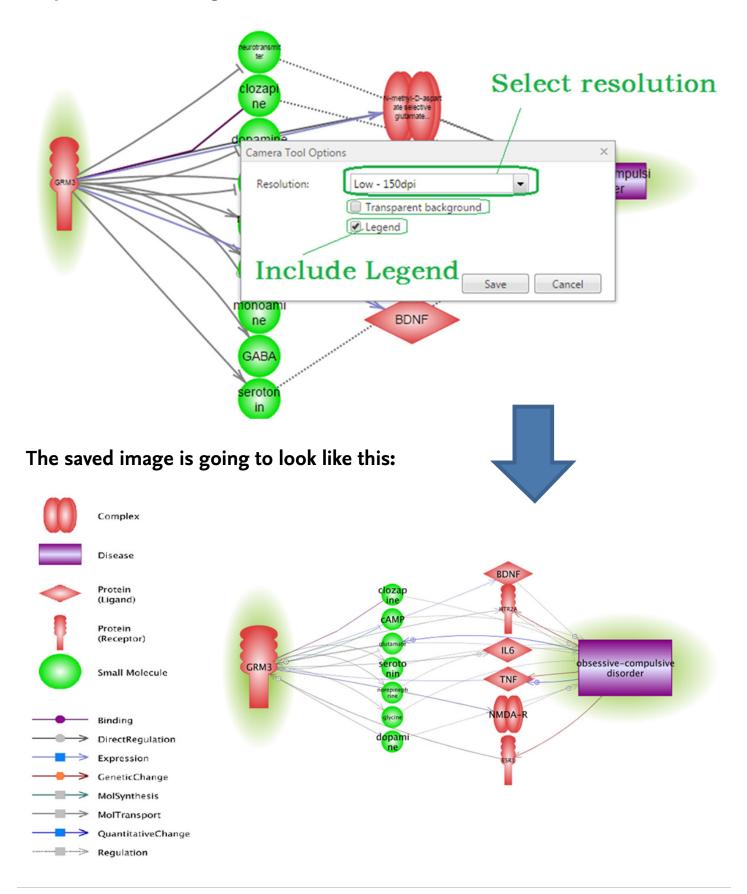


Step 10. Using 'Filter' to manage the relations and entities (for this example, filter by Ref # >=3, proteins and small molecules only, then remove entities which no longer connect OCD and GRM₃).


 Start ≧ OCD GRM3 × ≧ New Pathway × Save • Elegend Filter + Align + ⊕ Resize + ⊘ ≧ Camera Advanced Advanced Control = Con

9.6 Adjust Font and Object Size

Step 11. Adjust the font size.



Step 12. Adjust the object size.

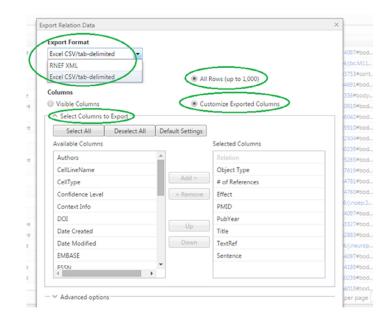
9.7 Save the Image

Step 13. Save the image.

9.8 Export the Relation Table

Step 14. Review and export the "Relation Table".

ave 🔹 🍸 Filters 🔹 🏭 V	riew 🔹 🗌 Select 🔹 👔 Edi	t 🔹 🖍 Undo 🔹 😰 Exp	port •					Search
Contraction of the Contraction o	Graph View							1
	Entity Table View	# of References	Effect	PMID	PubYear	Title	TextRef	Sentence
	Relation Table View	29	positive	19244097, 18441249, 104	2009, 2008, 1999, 2010, 2	Studies of the biogenic a	info:pmid/19244097#bod	The biogenic amine trans
GRM3> L-glycin.		2		, 17317007	2015, 2007	ATP-binding cassette subf	info:doi/10.1074/jbc.M11	Activated metabotropic g
clozapine GRM3	Binding	5		22283753, 21432027, , 25	2012, 2011, 2014, 2014, 2	Serotonin receptors as tar	info:pmid/22283753#cont	Meltzer, H.Y. Interaction
GRM3> GABA	MolTransport	18		18164691, 9247074, 1824	2008, 1997, 2008, 2008, 2	Mood disorders: Regulati	info:pmid/18164691#bod	In rat cortical primary cu
clozapine+> Obsess	Regulation	42	positive	9755356, 19683614, 1075	1998, 2009, 2000, 2010, 2	Serotonergic synergism: t	info:pmid/9755356#body:	There are case reports o
GRM3 L-glutamate	MolTransport	198	negative	18640919, , 18640921, 18	2008, 2011, 2008, 2008, 2	Review. Neurobiology of	info:pmid/18640919#bod	mGlu2/3 receptors ma
GRM3> HTR2A	MolTransport	2		12668042, 20632964	2003, 2010	Metabotropic glutamate r	info:pmid/12668042#bod	Activation of mGluR2/3
HTR2A Obsessive	Regulation	12	negative	11239910, 12842231, 154	2001, 2003, 2004, 2010, 2	Sexually dimorphic relatio	info:pmid/11239910#bod	The activation of postsy
GRM3> serotonin	MolTransport	2		17582504	2007, 2015	Metabotropic glutamate r	info:pmid/17582504#bod	Presynaptic mGlu2/3 rea
L-glutamate> Obse	Regulation	20		10980239, 21397620, , 22	2000, 2011, 2011, 2012, 2	Glutamatergic drugs exac	info:pmid/10980239#bod	Our findings suggest the
GRM3 dopamine	MolTransport	18	negative	17825265, 18164691, 203	2008, 2008, 2010, 2010, 2	Monoamine transporters	info:pmid/17825265#bod	Administration of an mo
GRM3> noradrenali	MolTransport	5		15857619, , 12825094, 12	2005, 2012, 2003, 2003, 2	Comparison of the effects	info:pmid/15857619#bod	Oral administration of the
GRM3> BDNF	Expression	9		18634781, 12842121, 128	2008, 2003, 2003, 2011, 2	Behavioral characterizatio	info:pmid/18634781#bod	Stimulation of mGlu 2/3
GRM3> N-methyl	DirectRegulation	9		25724760, , 22283756, 95	2015, 2015, 2012, 1998, 2	Perspectives on the mGlu	info:pmid/25724760#bod	Moreover, activation of
GRM3> N-methyl	Expression	7		, 21326193, 23593498, ,	2003, 2011, 2013, 2015, 2	Effects of GCP-II inhibitio	info:doi/10.1016/j.npep.2	But mGluR3 activation of
serotonin> Obsessi	Regulation	50		19244097, 18441249, 158	2009, 2008, 2005, 2000, 2	Studies of the biogenic a	info:pmid/19244097#bod	The biogenic amine tran
N-methyl-D-aspartate	Regulation	5	negative	23063327, , 24201232, 15	2013, 2012, 2013, 2004, 2	Memantine add-on in mo	info:pmid/23063327#bod	Compulsive-like behavio
L-glycine Obsessiv	Regulation	2	negative	21352883, 21352883	2011, 2011, 2012	Nutraceuticals in the treat	info:pmid/21352883#bod	In this regard glycine as
GRM3 -++> monoamine	MolTransport	2	positive	, 21704048	2012, 2012	Group II metabotropic glu	info:doi/10.1016/j.neurop	The role of mGlu2 vs m0
noradrenaline> Ob	Regulation	4		19244097, 18441249, , 10	2009, 2008, 2012, 1999	Studies of the biogenic a	info:pmid/19244097#bod	The biogenic amine tran
neurotransmitter+>	Regulation	9	positive	15714189, 20004479, 164	2005, 2010, 2006, 2003, 2	Cluster analysis of obsessi	info:pmid/15714189#bod	Other neurotransmitter
L-glutamate+> Obs	Regulation	19	positive		2000, 2011, 2011, 2012, 2	Glutamatergic drugs exac	info:pmid/10980239#bod	Our findings suggest that
BDNE> Obsessive-	Regulation	4		17884018 17884018 178	2008 2008 2008 2008 2	Extensive Genotyping of t	info:pmid/17884018#bod	Given these controversia


	ave 🝷 🍸 Filters 👻 🛄 V	iew 👻 🛄 Select 👻 🗓	🖹 Edit 👻 🖍 Undo 🕴	Export •
	Relation	Object Type	# of Reference	Export Rela
- 1	→ dopamine+> Obses	Regulation	29	posit
-	GRM3> L-glycine	MolTransport	2	
-	clozapine GRM3	Binding	5	

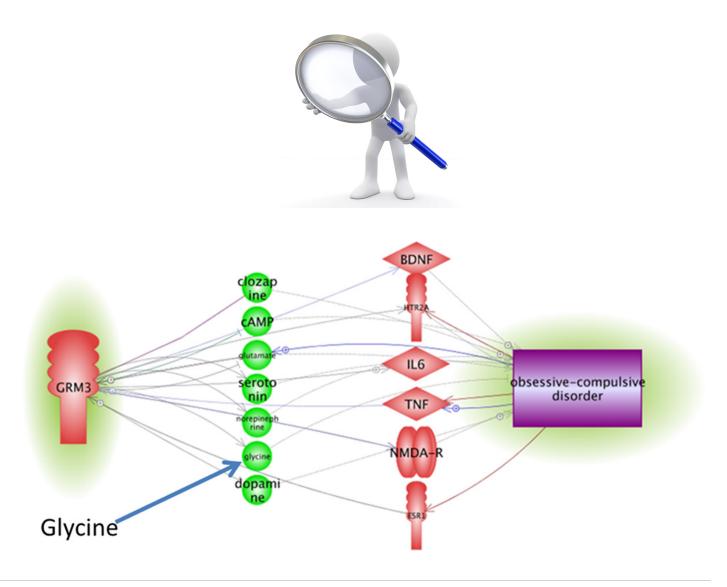
● Start | ▲ OCD GRM3 × ▲ class1 ×

Relation	Object Type	# of Reference	Export Relation Data	PMID	PubYear	Title
☐ → dopamine+> Obses	Regulation	29	positive	19244097, 18441249, 104	2009, 2008, 1999, 2010, 2	Studies of the biogenic a
GRM3> L-glycine	MolTransport	2		, 17317007	2015, 2007	ATP-binding cassette subf
🔲 🗮 clozapine GRM3	Binding	5		22283753, 21432027, , 25	2012, 2011, 2014, 2014, 2	Serotonin receptors as tar
Image: Second secon	MolTransport	18		18164691, 9247074, 1824	2008, 1997, 2008, 2008, 2	Mood disorders: Regulati
□ → clozapine+> Obsess	Regulation	42	positive	9755356, 19683614, 1075	1998, 2009, 2000, 2010, 2	Serotonergic synergism: t
□ → GRM3 L-glutamate	MolTransport	198	negative	18640919, , 18640921, 18	2008, 2011, 2008, 2008, 2	Review. Neurobiology of
□ → GRM3 ····> HTR2A	MolTransport	2		12668042, 20632964	2003, 2010	Metabotropic glutamate r
	Regulation	12	negative	11239910, 12842231, 154	2001, 2003, 2004, 2010, 2	Sexually dimorphic relatio
□ → GRM3 ····> serotonin	MolTransport	2		17582504	2007, 2015	Metabotropic glutamate r
□ → L-glutamate> Obse	Regulation	20		10980239, 21397620, , 22	2000, 2011, 2011, 2012, 2	Glutamatergic drugs exac
GRM3 dopamine	MolTransport	18	negative	17825265, 18164691, 203	2008, 2008, 2010, 2010, 2	Monoamine transporters
□ → GRM3 ····> noradrenali	MolTransport	5		15857619, , 12825094, 12	2005, 2012, 2003, 2003, 2	Comparison of the effects
GRM3> BDNF	Expression	9		18634781, 12842121, 128	2008, 2003, 2003, 2011, 2	Behavioral characterizatio
GRM3> N-methyl	DirectRegulation	9		25724760, , 22283756, 95	2015, 2015, 2012, 1998, 2	Perspectives on the mGlu
GRM3> N-methyl	Expression	7		, 21326193, 23593498, ,	2003, 2011, 2013, 2015, 2	Effects of GCP-II inhibitio
□ → serotonin> Obsessi	Regulation	50		19244097, 18441249, 158	2009, 2008, 2005, 2000, 2	Studies of the biogenic a
□ → N-methyl-D-aspartate	Regulation	5	negative	23063327, , 24201232, 15	2013, 2012, 2013, 2004, 2	Memantine add-on in mo
□ → L-glycine Obsessiv	Regulation	2	negative	21352883, 21352883	2011, 2011, 2012	Nutraceuticals in the treat
□ → GRM3+> monoamine	MolTransport	2	positive	, 21704048	2012, 2012	Group II metabotropic glu
> Ob	Regulation	4		19244097, 18441249, , 10	2009, 2008, 2012, 1999	Studies of the biogenic a
□ → neurotransmitter+>	Regulation	9	positive	15714189, 20004479, 164	2005, 2010, 2006, 2003, 2	Cluster analysis of obsessi
□ → L-glutamate+> Obs	Regulation	19	positive		2000, 2011, 2011, 2012, 2	Glutamatergic drugs exac
BDNF> Obsessive-	Regulation	4		17884018 17884018 178	2008 2008 2008 2008 2	Extensive Genotyping of t
ttps://mammalcedfx.pathwaysti						

Step 15. Customize the output.

- Select output format: 'CVS' or 'XML'
- Select the columns of the output

Step 16. View the saved Table.


	1913=3 (mGlu 2/mGlu 3)} rec		hertal grey are also critically involved in reducing the release of ID[1178899=glycine], in a way that is dependent on metabotropic ID[1197745=glutamate] subtype 2 and ioning (). CONTEXT[10004162,10000096];Activated ID[2913=metabotropic glutamate receptor 3] inhibits subsequent ID[1197745=glutamate] and ID[1178899=glycine] release (47).
Å		В	C D E F G H I J K L N K O P Q R S T U V
1 RelationSymbolicName		Effect R	Welsticn?Publear TextRef Authors Journal msrc Title
2 MolTransport: GRM3> glycine			2 2007;2011info:pmi/Maicone, S.Pain; Jour ID [134=A-The antioociceptive effect of 2-chloro-2'- C-methyl-N 6-cyclopentyladenosine (2'-Me-CCPA), a highly selective adenosine A 1:
3 negative Regulation: glycine obsessiv	e-compulsive disorder	negative	2 2011;201 info:pmi/Camfield,Progress In this :Nutraceuticals in the treatment of Obsessive Compulsive Disorder (OCD): A review of mechanistic and clinical evidence;Nutrace
4 MolTransport: GRM3> serotonin			2 2007;2011info:pmi/Palucha, iPharmaco:Presymap:Metabotropic glutamate receptor ligands as possible antiolytic and antidepressant drugs;When is a proof-of-concept (POC) not
5 positive MolTransport: GRM3+> IL6		positive	2 2005;200/info:pmidronica, Neurosci-The ID [2/Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-12-stimulated release of IL-6 in cultured human a
6 GeneticChange: obsessive-compulsive disord 7	ler> ESR1		2 2011;201 info:pmid.abad, J. Journal (Although Reproductive hormone sensitivity and obsessive-compulsive disorder: Are there differences in the genetic predisposition betw
8 positive Regulation: cAMP -+> obsessive-o	compulsive disorder	positive	2 2002;2001info:pmi/Warazzit.Psychone/On the buDecreased inhibitory activity of PKC in OCD patients after six months of treatment;Altered cAMP-dependent protein kinase A in
9 positive Expression: TNF+> GRM3		positive	3 2012;201-info:doi.Berger, J.Neurosci+Focusing Opposite regulation of metabotropic glutanate receptor 3 and metabotropic glutanate receptor 5 by inflammatory stimuli in cu
10 Regulation: norepinephrine> obsessive-	compulsive disorder		3 2012;200finfo:doi.Ari, M. :0. Journal (Both irr/Serum adiponectin and resistin levels in patients with obsessive compulsive disorder; Studies of the biogenic amine transport
11 positive QuantitativeChange: obsessive-com	pulsive disorder> TNF	positive	4 2012;200finfo:doi, Unsal, C. Journal (Increase Low plasma adiponectin levels in panic disorder; A cytokine study in children and adolescents with Tourette's disorder; Cytoki
12 GeneticChange: obsessive-compulsive disord	ler> TNF		4 2008; 2001 info:pmidbounie, A.Neuroscielle sing INF-alpha polymorphisms are associated with obsessive-compulsive disorder; INF-alpha polymorphisms are associated with obsess
13 Expression: GRM3> NMDA-R			5 2003;2011info:doi/CarpentelNeuropeyBut ID/2Efffects of GCP-II inhibition on responses of dorsal horn neurones after inflammation and neuropathy: an electrophysiological
14 MolTransport: GRM3> norepinephrine			5 2005;2011info:pmil.orrain, NeurophaiOral adm.Comparison of the effects of diazepam, the CRF1 antagonist CP-154, 526 and the group II mGlu receptor agonist LY379268 on str
15 Regulation: BDNF> obsessive-compulsive	disorder		5 2008;2001info:pmiklonso, P.Biologic/Given th Extensive Genotyping of the BDVF and NTRK2 Genes Define Protective Haplotypes Against Obsessive-Compulsive Disorder:Extensiv
16 negative Regulation: NMDA-R obsessive	-compulsive disorder	negative	6 2012;2011/info:pmi/Ghaleiha, Journal (Compulsi/Memantine add-on in moderate to severe obsessive-compulsive disorder: Randomized double-blind placebo-controlled study;Gluta
17 Binding: GRM3 clozapine			7 2012;201-info:pmidWeltzer, HOurrent IMeltzer, Serotonin receptors as targets for drugs useful to treat psychosis and cognitive impairment in schizophrenia; The novel object
18 DirectRegulation: GRM3> NMDA-R			8 2015:2011info:emb/Purkayas/Current IGroup 2 iA review on GABA/glutamate pathway for therapeutic intervention of ASD and ADED:Glutamatergic system controls synchronizatio
19 positive DirectRegulation: ESR1 -+> GRM3		positive	9 2010;201:info:pmidCrove-StiJournal (Further, Membrane estrogen receptors activate the metabotropic glutamate receptors mGluRS and mGluRS to bidirectionally regulate CREB
20 Expression: GRM3> BDNF			9 2008;200(info:pmidespalov,European Stimulat,Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depress
21 positive Regulation: glutamate -+> GRM3		positive	9 2005;200Hinfo:pmidWoran, M. M. :McFarl In the first experiment, the capacity of ID(1197745=glutamate) derived from xc- to regulate excitatory transmission via ID(0,2912,291
22 positive DirectRegulation: glutamate \longrightarrow	GR013	positive	13 2011:2011info:pmiRyan, P. J.Neurosci-However, Nucleus incertus-An energing modulatory role in arousal, stress and memory. Using human brain imaging studies as a guide towal
23 negative Regulation: HTR2A obsessive-	compulsive disorder	negative	13 2001;200Cinfo:pmi/Enoch, W./Biologic/The acti/Sexually dimorphic relationship of a 5-HT 2A promoter polymorphism with obsessive-compulsive disorder; How to treat OCD in pa

9.9 Reality Check

Do does this really work?

Let's take a closer look at some of our results

Take glycine, for example; we can examine the two relations which connect glycine to both GRM3 and OCD.

GRM₃ → Glycine

Activated ID{2913=metabotropic glutamate receptor 3} inhibits subsequent ID{1197745=glutamate} and ID{1178899=glycine} release (Robert et al. 2015).

$\mathsf{Glycine} \rightarrow \mathsf{OCD}$

The ID{7000363=patient} was administered ID{1178899=glycine} over a 5-year period, which led to a large reduction in OCD symptoms, and resumption of education and social life (Camfield et al., 2011).

So, activated GRM₃ inhibits glycine release, and the administration of glycine proved to be an effective treatment for OCD in at least one documented case.

Thus, variations in the GRM3 gene may affect glycine release that, in turn, impact the symptoms of OCD.

And now you see that GRM3 and OCD are indeed connected!

That was

Before you go, what did you learn today?

- You learned how to connect two entities not directly connected in the literature by using the "Add, Shortest Path" option.
- You learned how to make publication-quality images using a combination of highlighting, filtering, and by adjusting font and object size.
- You learned how to save a high resolution image.
- You learned how to export a relation table.
- You reviewed evaluating an indirect connection in order to see whether it made biological sense.

Study Questions 9

- 1. What is the most studied small molecule connection between GRM3 and OCD?
- 2. What specific "pro-inflammatory cytokines" play a role in OCD? (Hint: Use "Relation Table View" to find relations and references for this functional class and OCD.)
- 3. GRM3 influences which member of the nerve growth factor family of proteins?
- 4. GRM3 influences which member of the dopamine receptor family of proteins?
- 5. Find cell processes that are influenced by GRM3 and also linked with OCD. How many of them? (Hint: Add Cell Processes separately to GRM3 and OCD, then check overlap.)
- 6. Find cells that are influenced by GRM3 and also linked to OCD. (Hint: This is the same as for Question 5.) How many of them? Name four of these cell types.

For Protein/Small Molecule Association with Diseases and Cell Processes, How Do I ...

Exercise 9.1: What proteins are known to be associated with a disease or cellular process?

Identifies proteins known to be associated with a specific disease or cellular process. (More specific data relating proteins to diseases is available in DiseaseFx data including StateChange, GeneticChange and QuantitativeChange.)

Step 1: Create New Pathway or within Pathway, select disease or cell process

Step 2: Select Add- > Network Builder

- Step 3: Select Expand Pathway, Advanced Expand Pathway Tool
- Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein" Relations: Select "Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.2: What small molecules are associated with a disease or cellular process?

Identifies small molecules that are associated with diseases or cellular processes. Small molecule association with diseases and cell processes through regulation relations are found in the ChemEffect Database. In addition, more information about small molecules associated with diseases can be found in the DiseaseFx database through QuantitativeChange and biomarker relations.

Step 1: Create New Pathway or within Pathway, select disease or cell process

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Small Molecules" Relations: "Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.3: What proteins are known to change in expression, activity, or abundance in a disease?

Identifies proteins that are changed in activity abundance or expression in a disease. QuantitativeChange relations are found only in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein" Relations: Select "QuantitativeChange"

Add condition: Quantitative Type is equal to: expression, abundance, activity

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.4: What small molecules are known to change in abundance in a disease?

Identifies small molecules that are changed in abundance in a disease. QuantitativeChange relations are found in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

178

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Small Molecule" Relations: Select "QuantitativeChange"

Add condition: QuantitativeType is equal to : abundance

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.5: What proteins with genetic mutations are associated with a disease?

Identifies proteins with genetic changes (gene deletions, amplifications, mutations, epigenic changes, or methylation) associated with a disease. GeneticChange relations are found in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein" Relations: Select "GeneticChange"

Add condition: ChangeType is equal to : gene deletions, amplifications, mutations, epigenic methylation

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.6: What proteins or small molecules are diagnostic for a disease?

Identifies proteins/small molecules known to be diagnostic for a disease. Biomarker relations are found in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein and Small Molecules" Relations: Select "Biomarker"

Add condition: Biomarker Type is equal to : diagnostic

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9.7: What proteins or small molecules are prognostic for a disease?

Identifies proteins/small molecules known to be prognostic for a disease. Biomarker relations are found in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein and Small Molecules" Relations: Select "Biomarker"

Add condition: Biomarker Type is equal to : prognostic

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9. 8 What protein phosphorylation/dephosphorylation events are associated with a disease?

Identifies post translational protein phosphorylation/dephosphorytation events associated with a disease. StateChange relations are found in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

180

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein" Relations: Select "StateChange"

Add condition: ChangeType is equal to : phosphorylation

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 9. 9 What protein/gene splice variants are associated with a disease?

Identifies alternate gene splicing events/ splice variants associated with a disease. StateChange relations are found only in DiseaseFx data.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Protein" Relations: Select "StateChange"

Add condition: ChangeType is equal to : alternative splicing

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Module 10

Understanding a Rare Disease

Contents

10.1	Definition of a Rare Disease	183
10.2	A Research Challenge	183
	SCA3 = Spinocerebellar Ataxia Type 3	
10.4	SCA3, All Relations	186
10.5	Disease Description	187
10.6	ATXN 3; a Mendelian Gene Disorder	188
10.7	ATXN3 and Cell Processes	191
10.8	Therapeutic Treatments: Clinical Trials	193
10.9	New Potential Targets	. 195

Study Questions 10

199

How Do I... Small Molecule abundance, Clinical Trials, Functional Associations between Diseases and Cell Processes:

Exercise 10.1:	What proteins regulate the synthesis or catabolism of a small molecule?20	D
Exercise 10.2:	What small molecules/drugs have been tested in clinical trials for a disease?20	0
Exercise 10.3:	What cellular processes are associated with a disease?20	1

10.1 Definition of a Rare Disease

So usually we would have an introduction outlining the description and the background of a disease which we are choosing to study more in depth at the molecular level (see, for example, Pre-eclampsia Disease, Module II).

A disease or disorder is defined as rare in the USA when it affects fewer than 200,000 Americans at any given time

- 80% of rare diseases have identified genetic origins whilst others are the result of infections.
- 50% of rare diseases affect children.

Excerpted from Rare Disease Day 2017

10.2 A Research Challenge

But what if you are a researcher and someone comes and asks you to come up to speed on a rare disease?

And they only give you a single clue as to what that rare disease might be!

SCA₃*

What do you say, should we take the challenge?

IT'S TIME TO

184

ELSEVIER

Yes, let's!

For this exercise let's agree to stay strictly within Pathway Studio and see how much we can learn about "SCA3" (in a very short period of time).

10.3 SCA3 = Spinocerebellar Ataxia Type 3

First Step, Search for SCA3:

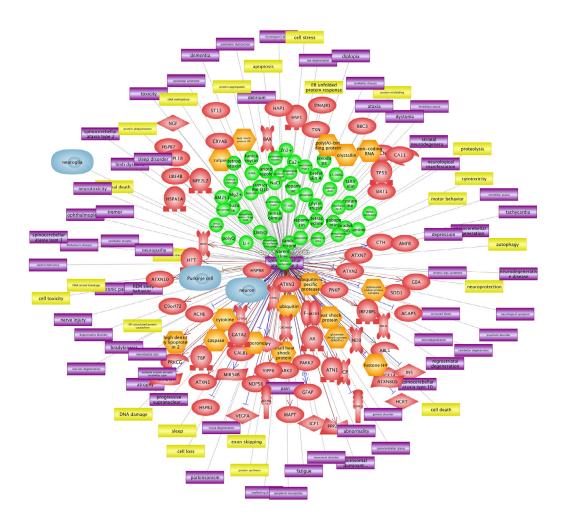
Pathway Studio	sca3
Start ▲ New Pathway ×	
🔚 Save 🔹 🔚 Legend 🍸 Filters 🔹 🛤 View 👻 🛄 Select 👻 🛅 Edit 👻 🍀 Ad	d 🕶 🖍 Undo 👻 🦅 Highlight 👻 🎧 Tools 👻
🔍 📲 Layout 🔹 🐼 Style 👻 🗛 🖌 🍼 🥥 🍑 🚔 Align 👻 🕂 Resize 👻 🥖	💽 Camera
spinocerebellar ataxia type 3	
< [m
Search: sca3 ×	-
🔚 Save 🔹 🥅 Select 🔹 🗈 Edit 🔹 🕜 Export 👻 🥥 Tools 👻	
1 Selected Deselect All	
Name Description	n Object Type
🗹 🕈 spinocerebellar ataxia type 3	Disease

And now you have a name: SCA3 = spinocerebellar ataxia type 3.

Now let's inspect the properties of this disease (double-click on disease icon).

 ✓ ✓	atax	cerebellar ia type 3	
 Properties General External Identifiers Other Properties Ontological relationships Collections Associated Relations All relations (250) Partner Links 	Total Connectivity: Owner: URN: Date Created:		

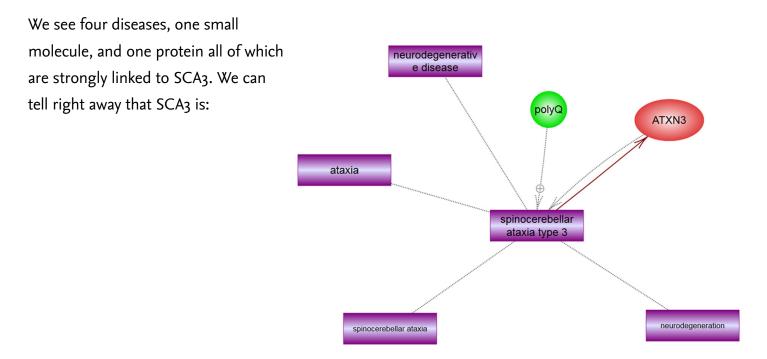
Wow, this disease sure has a lot of different names, and Pathway Studio will recognize all of them in the scientific literature! This is exceptionally useful as it ensures that you are less likely to overlook important information.


Don't Miss it!

10.4 SCA3, All Relations

We note also that Pathway Studio has a total number of 250 unique facts or relations connected with SCA3 (double-click on all relations icon).

Let's examine them all!


Select All, Edit and Copy into workspace:

View Relation Table and sort by the numbers of references descending (relations with the most references will be at top).

Pathway Studio		Basio
Start SCA3 -all rela ×		
🔚 Save 🔹 🍸 Filters 🔹 🏢 View 👻 🛄 Select 🔹 🛅 Edit 👻 🌑	Undo 🝷 👚 Export 🝷	
Relation	Object Type	# of References
spinocerebellar ataxia type 3> ATXN3	GeneticChange	160
☐ → ATXN3> spinocerebellar ataxia type 3	Regulation	108
$\square \rightarrow polyQ \dots +> spinocerebellar ataxia type 3$	Regulation	44
🔲 — neurodegenerative disease spinocerebellar ataxia type 3	FunctionalAssociation	33
🔲 — spinocerebellar ataxia type 3 spinocerebellar ataxia	FunctionalAssociation	18
🔲 — spinocerebellar ataxia type 3 ataxia	FunctionalAssociation	13
— spinocerebellar ataxia type 3 neurodegeneration	FunctionalAssociation	12

10.5 Disease Description

• A subset of spinocerebellar ataxia diseases, in general.

• And is characterized by neurodegeneration and ataxia, defined as impairment of the ability to perform smoothly coordinated voluntary movements (drill down on properties of ataxia diseases, click on External Identifiers, MeSH Heading).

Double-click on the protein: ATXN3

Properties		
General External Identifiers		Machado-Joseph dicease, also known as spinocerebellar attains ² , is an autosomal dominant neurologic disorder. The protein encoded by this gene contains (CAG)n repeats in the coding region, and the expansion of these repeats from the normal 13-36 to 68-79 is one cause of Machado-Joseph disease. There is a negative correlation between the age of onset and CAG repeat numbers. Alternatively spliced transcript variants encoding differer isoforms have been described for this gene. [provided by RefSeq. Seg 2009]
Ontological relationships		221008M02;Ric Al46012; Al4F173; AT3; DS; NU5; NUD E MUD gene; MUD protein; MUD1; Machado-Joseph disease (spinocerebellar ataxia 3, olivopontocerebellar ataxia 3, autosomal dominant, ataxin 3)
Collections		Machado-Joseph disease (spinocerebellar ataxia 3, olivopontocerebellar ataxia 3, autosomal dominant, ataxin 3) homolog; Machado-Joseph disease 1 gene; Machado-Joseph disease gene; Machado-Jo
Associated Relations		Machado-Joseph disease protein 1; Machado-Joseph disease protein 1; OTTHUMP00000221584; RIKEN cDNA 2210008M02 gene; RP11-529H20.5; Rsca3; SCA3; gene; SCA3 gene; SCA3 protein; ataxin 3; ataxin 3 isoform 1; ataxin 3
All relations (\$47)		isoform 2; ataxin 3 isoform 1; ataxin 3 variant h; ataxin 3 variant h; ataxin 3 variant ref; ataxin 12; ataxin 3; aton3; josephin; machado-Joseph disease protein 1 homolog; machado-joseph disease
Partner Links		(spinocerebellar atasia 3) gene; machado-joseph disease (spinocerebellar atasia 3) protein; olivopontocerebellar atasia 3) gene; olivopontocerebellar atasia 3) protein; olivopontocerebellar atasia 3) protei
		spinocerebellar ataxia III protein; spinocerebellar ataxia type 3 protein
	Connectivity:	551
	Cell Localization:	Nucleus
	Organism:	Homo sapiens
	Human chromosome position:	
	Rat chromosome position:	
	Mouse chromosome position:	
	Owner:	
		umagi-Ilid-4287
		2015-12:18 06:22:18 06

Wow, this protein has a lot of different names (as is often the case!) one of which is Machado-Joseph disease (another common name for SCA₃ disease).

 spinocerebellar ataxia type 3> ATXN3 	GeneticChange	160
→ ATXN3> spinocerebellar ataxia type 3	Regulation	108

Machado-Joseph disease, also known as spinocerebellar ataxia -3.

10.6 ATXN3: a Mendelian Gene Disorder

We can kind of figure this protein is central to the disease based on the 160 references indicating that a GeneticChange in ATXN3 is associated with SCA3 and also that 108 references indicate that ATXN3 regulates the disease as well.

Let's click on External identifiers and we will see that there is a link to OMIM (the Online Mendelian Inheritance in Man database).

Protein ATXN3 (ataxin 3)		
 Properties General External Identifiers 	Entrez GeneID: 110616; 4287; Unigene ID: Hs.532632; Mr Swiss-Prot Accession: A0A0A0MS38;	m.2
 Ontological relationships Collections 	Q9H3N0 Swiss-Prot ID: ATX3_HUMAN	
 Associated Relations All relations (470) 	OMIM ID: 109150; 60704	

This database was initiated in the early 1960s by Dr. Victor A. McKusick as a catalog of Mendelian traits and disorders and is maintained at the Johns Hopkins University. Dr. McKusiek is widely known as the "father of medical genetics."

109150

MACHADO-JOSEPH DISEASE; MJD

Alternative titles; symbols

SPINOCEREBELLAR ATAXIA 3; SCA3 SPINOCEREBELLAR ATROPHY III AZOREAN NEUROLOGIC DISEASE SPINOPONTINE ATROPHY NIGROSPINODENTATAL DEGENERATION

Phenotype-Gene Relationships

Location	Phenotype	Phenotype MIM number	Inheritance	Phenotype mapping key	Gene/Locus	Gene/Locus MIM numbe	
14q32.12	Machado-Joseph disease	109150	AD	3	ATXN3	607047	

▼ TEXT

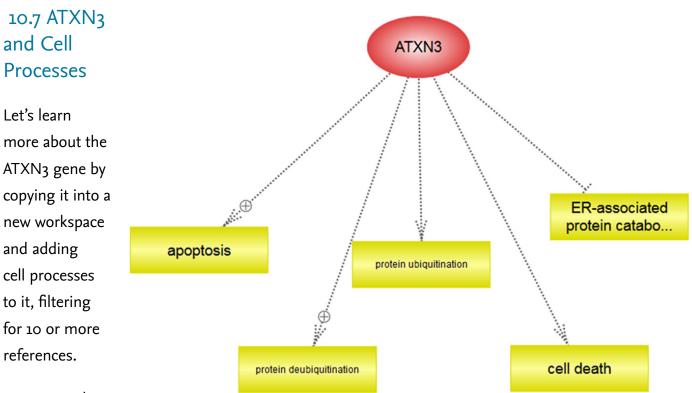
A number sign (#) is used with this entry because Machado-Joseph disease (MJD), also known as spinocerebellar ataxia-3 (SCA3), is caused by a heterozygous (CAG)n trinucleotide repeat expansion encoding glutamine repeats in the ataxin-3 gene (ATXN3; 607047) on chromosome 14q32.

Normal individuals have up to 44 glutamine repeats, and MJD patients have between 52 and 86 glutamine repeats. Incomplete penetrance is associated with 45 to 51 repeats (Todd and Paulson, 2010).

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia-3 (SCA3), is caused by a heterozygous (CAG)n trinucleotide repeat expansion encoding glutamine that repeats in the ataxin-3 gene.

There is a wealth of information on SCA₃ disease in this OMIM entry. Scroll down through the Description and Clinical Features:

Machado-Joseph disease, named for affected families of Azorean extraction, is an autosomal dominant progressive neurologic disorder characterized principally by ataxia, spasticity, and ocular movement abnormalities. Although independently described as a seemingly separate disorder, **spinocerebellar ataxia-3** is now known to be the same as Machado-Joseph disease.


The **molecular genetics** Of MJD/SCA₃ has shown that in normal individuals, the ATXN₃ gene was found to contain between 1₃ and 36 CAG repeats, whereas most of the patients with clinically diagnosed MJD and all of the affected members of a family with the clinical and pathologic diagnosis of MJD showed expansion of the repeat number to the range of 68 to 79.

The **pathogenesis** of MJD/SCA₃ is clearly related to the expanded CAG repeats since cell death in cultured cells expressing a portion of the ATXN₃ gene that included the expanded CAG repeats occurred only when the CAG repeat was translated into polyglutamine residues¹.

The **neuron-specific phenotype** of Machado-Joseph disease can be explained by experiments showing that L-glutamate-induced excitation of patient-specific induced pluripotent stem cell (iPSC)-derived neurons initiates calcium-dependent proteolysis of ATXN3 followed by the formation of SDS-insoluble aggregates. Aggregate formation was further dependent on functional sodium and potassium channels as well as ionotropic and voltage-gated calcium channels, and was not observed in iPSCs, fibroblasts, or glia².

1: Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A. Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet. 1996 Jun;13(2):196-202. PubMed PMID: 8640226.

2: Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J, Mertens J, Tüting T, Hoffmann P, Klockgether T, Evert BO, Wüllner U, Brüstle O. Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature. 2011 Nov 23;480(7378):543-6.. PubMed PMID: 22113611.

We can see by inspecting the

relation table and some of the references that normal ATN₃ has positive protein deubiquitinating activity and is involved in the endoplasmic reticulum-associated degradation pathway:

"The action of ataxin-3 in this context requires its deubiquitinase activity as well as the intact proteasome function, suggesting that ataxin-3-mediated deubiquitination may promote proteasomal degradation of misfolded or dysfunctional proteins to alleviate polyQ-associated toxicity."

From Liu Y, Ye Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr Protein Pept Sci. 2012 Aug;13(5):436-46. Review. PubMed PMID: 22812527

We can drill down further into the article from which this knowledge was extracted and we come across a very useful summary of the biological conditions under which normal ATXN3 functions:

"Polyubiquitination of misfolded proteins... is thought to be associated with the formation of inclusion bodies... The diseases associated with protein misfolding and aggregation are recognized as "conformational diseases" ... The common feature of these diseases is the tendency of misfolded protein to form aggregates. Misfolded proteins can be refolded by molecular chaperones or cleared by the ubiquitin-proteasome system (UPS)."

On the other hand, mutant ATXN3 clearly promotes the apoptosis of neurons:

"PolyQ-expanded ataxin-3 is neurotoxic and induces neuronal apoptosis through the mitochondrial pathway"

And,

"Ataxin-3 has also been proposed to regulate protein degradation via endoplasmic reticulum-associated protein degradation."

From Huang Q, Figueiredo-Pereira ME. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis. 2010 Nov;15(11):1292-311. doi: 10.1007/s10495-010-0466-z. Review. PubMed PMID: 20131003

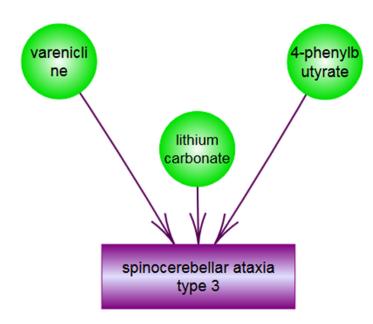
Also from the definition of the cell process: ER-associated protein catabolism,

(External Identifiers, GO ID 0030433 at AMIGO),

ER-associated protein degradation (ERAD) is the series of steps necessary to target endoplasmic reticulum (ER)-resident proteins for degradation by the cytoplasmic proteasome. Begins with recognition of the ER-resident protein, includes retrotranslocation (dislocation) of the protein from the ER to the cytosol, protein ubiquitination necessary for correct substrate transfer, transport of the protein to the proteasome, and ends with degradation of the protein by the cytoplasmic proteasome.

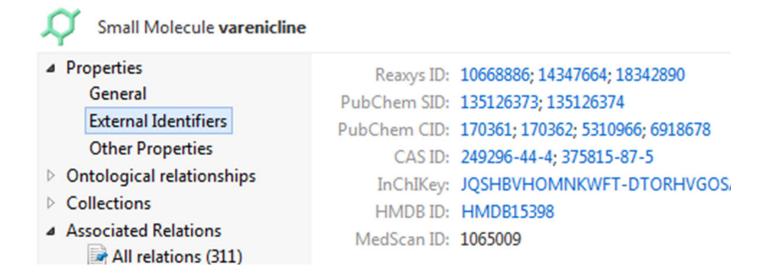
The picture is getting clearer!

Mutant ATXN3 deregulates the normal processes of protein degradation with the resulting build-up of toxic accumulations of misfolded proteins into insoluble aggregates.


So, what about therapeutic treatments, do any exist for this unfortunate condition?

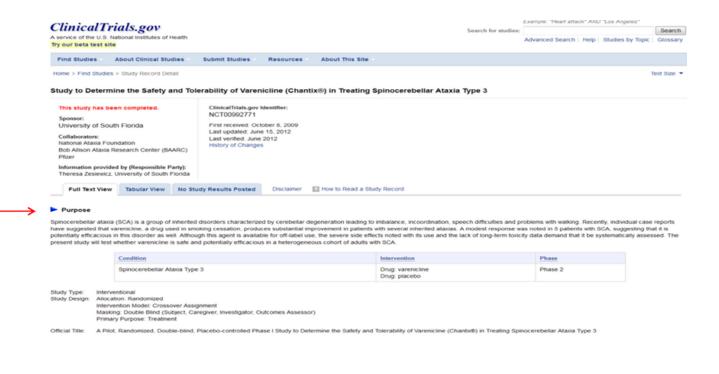
--let's go find out:

10.8 Therapeutic Treatments: Clinical Trials


(Add, Network Builder, Advanced Expand Pathway, Small Molecule, Clinical Trial)

		spinoce	ere	bellar			
			a ty	pe 3			
etwork Build	ler						
Step 3: Se	lect Advanced Filter	s					
Entiti	es Filter			Relations	Filter		
Cell				Binding			-
Cell F	Process			Biomarker			
Clinic	al Parameter			CellExpressi	on		
Comp	olex			ChemicalRe	action		
Disea	ise			ClinicalTrial		Add Condition	E
E Fund	tional Class	d Filters Filter Filter Relations Filter Binding Biomarker CellExpression ChemicalReaction ChemicalReac					
Prote	in			Expression			
Small	Molecule	Add Condition		FunctionalA	ssoc		
Treat	ment			GeneticCha	nge		u
				miRNAEffed	t		
				MolSynthes	is		
				MolTranspo	rt		
				PromoterBin	nding		-
Check	All Uncheck All	Reset	C	heck All	Uncheck All	Reset	
« Back	Next » Res	set All Filters				Cance	el

Wow, not too many drugs in clinical trials (maybe this is because SCA₃ is a rare disease).


Let's quickly go check them out, right click on the entity and go to Properties, External Identifiers, PubChem CID:

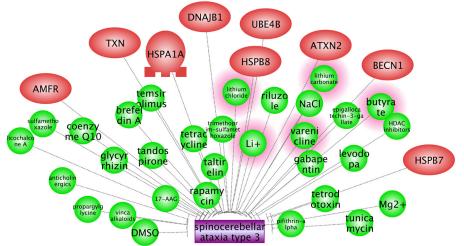
This will usually give you a nice, succinct summary of a compound/drug's mechanism of action (MOA) and therapeutic indication.

Pubic hem O P E N CHEMISTRY DATABASE Compound Summary for CID 170361	OPEN CHEMISTRY DATA BASE	Search Compounds				
	nmary for CID 170361	📩 Download	C Share	? Help		
Vareni	cline		► Cite	this Record		
STRUCTURE VENDORS	DRUG INFO PHARMACOLOGY LITERATURE PATENTS BIOACTIVITIES					
PubChem CID:	170361					
Chemical Names:	Varenicline; 249296-44-4; JQSHBVHOMNKWFT-UHFFFAOYSA-N; J-501695; Va h][3]benzazepine,7,8,9,10-tetrahydro- More	renicline (INN); 6,10	Methano-6H-pyr	azino[2,3-		
Molecular Formula:	C ₁₃ H ₁₃ N ₃					
Molecular Weight:	211.268 g/mol					
InChI Key:	JQSHBVHOMNKWFT-UHFFFAOYSA-N					
Drug Information:	Drug Indication Therapeutic Uses Clinical Trials					

In this case, varencline is partial agonist (activator) of the nicotinic receptor and is used for smoking cessation. The clinical trial record indicates that a modest response was noted in patients with SCA:

A quick similar look at lithium carbonate and 4-phenylbutyrate shows that they are a mood stabilizing agent or have antineoplastic activity, respectively.

It clearly looks like these trials are about repurposing drugs developed for other indications and are also primarily directed at treating the symptoms of ataxia.


10.9 New Potential Targets

So what's in the pipeline?

Let's find ALL protein and small molecule negative regulators discussed in connection with SCA₃ in the scientific literature.

	Entities	Filter		Relations	Filter		
	Cell		ClinicalTrial DirectRegulation				^
	Cell Process						
	Clinical Parameter			Expression			
	Complex	Filters Filter Add Condition Add Condition Add Condition CAII Reset Reset All Filters		FunctionalAsso)c		
	Disease			GeneticChange	:		ſ
	Functional Class		miRNAEffect MolSynthesis				
•	Protein	Add Condition					
~	Small Molecule	Add Condition		MolTransport			
	Treatment		PromoterBinding			=	
				ProtModificatio	on		
				QuantitativeCh	ia		
				Regulation	"Eff	ect" = 'negative'	
				StateChange			

Sort results by the highest number of

references (highlighted small molecules above are already in clinical trials).

Relation	Object Type	# of Reference	PMID	Source	Selected Sente	ChangeType	Effect	CellType	Organ	Organism	Tissue	PubYear
-> temsirolimus spinocerebellar ataxia type 3	Regulation	6	26123252, 2405	Medscan, Med	CCI-779 is desi		negative	neuron, astroc	Brain, Brain, Br	Rattus norvegi		2015, 2013, 201.
→ BECN1 spinocerebellar ataxia type 3	Regulation	5	26972528, 2487	Medscan, Med	Evidence show		negative	neuron	Cerebellum, Br	Rattus norvegi		2016, 2014, 201
→ HSPA1A spinocerebellar ataxia type 3	Regulation	5	11377963, 2366	Medscan, Med	Overexpressio		negative	Purkinje cell	Eye, Brain	Drosophila meL		2001, 2013, 200
→ rapamycin spinocerebellar ataxia type 3	Regulation	5	20739560, 2392	Medscan, Med	More recently,		negative	neuron, neuro	Peripheral Nerv	Rattus norvegi		2010, 2013, 201
butyrate spinocerebellar ataxia type 3	Regulation	5	21047555, 2104	Medscan, Med	Based on data		negative	Purkinje cell	Cerebellum, Pe	Mus musculus		2011, 2011, 201
→ HSP87 spinocerebellar ataxia type 3	Regulation	2	21045566	Medscan, Med	Hsp87 also red		negative		brain, brain	Mus musculus,		2016, 2016, 201
→ Li+ spinocerebellar ataxia type 3	Regulation	2	23812869, 2511	Medscan, Med	Because of this		negative		Eye	Drosophila mel		2013, 2014, 201
Relation					Obje	ct Type	í.	# of I	Referen	ces	Effe	t
→ temsirolimus spinocerebellar ataxia type 3					Regu	lation		6			nega	ative
→ BECN1 spinocer	ebellar at	axia type	3		Regu	lation		5			nega	ative
→ HSPA1A spinocerebellar ataxia type 3				Regulation			5		negative			
→ rapamycin spino	cerebella	r ataxia t	type 3		Regu	lation		5			nega	ative
→ butyrate spinoce	rebellar a	ataxia ty	pe 3		Regu	lation		5			nega	ative
→ ATXN2 spinocere	bellar ata	ixia type	3		Regu	lation		з			nega	ative
→ HSPB7 spinocere	bellar ata	axia type	3		Regu	lation		2			nega	ative
→ Li+ spinocerebe	llar ataxia	type 3			Regu	lation		2			nega	ative
-+ antichosinergics spinocerebellar ataxia type s	Regulation	1	19090685	Medscan	Dopaminergic		negative	Purkinje cell				2010
→ riluzole spinocerebellar ataxia type 3	Regulation	1	21900579	Medscan	Accordingly, w		negative	Purkinje cell				2011
→ brefeldin A spinocerebellar ataxia type 3	Regulation	1	15504352	Medscan	SK-N-SH cells a		negative					2004
→ TXN spinocerebellar ataxia type 3	Regulation	1	17301052, 1730	Medscan, Med	Furthermore, o		negative	neuron, neuron				2007, 2007
→ sulfamethoxazole spinocerebellar ataxia type 3	Regulation	1	8597984	Medscan	Encouraged by		negative					1995

"Chemical activation of autophagy with **rapamycin** or its analogue CCI-779 [Temsirolimus] also reduces the levels of mutant ataxin-3, and ameliorates its toxicity in cell and mouse (expressing full-length ataxin-3-Q70) models of SCA3."¹

"These data demonstrate that autophagy is a key degradation pathway, with beclin-1 playing a significant role in alleviating Machado-Joseph disease pathogenesis."²

"Over expression of **Hsp70** or specific Hsp40 chaperones suppressed neurotoxicity in the Drosophila spinocerebellar ataxia3 model, suggesting that modulation of protein folding affects the disease process."³

1. Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans. 2013 Oct;41(5):1103-30. PubMed PMID: 24059496.

2. Nascimento-Ferreira I, Santos-Ferreira T, Sousa-Ferreira L, Auregan G, Onofre I, Alves S, Dufour N, Colomer Gould VF, Koeppen A, Déglon N, Pereira de Almeida L. Over expression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain. 2011 May;134(Pt 5):1400-15.PubMed PMID: 21478185.

3. Bernards A, Hariharan IK. Of flies and men--studying human disease in Drosophila. Curr Opin Genet Dev. 2001 Jun;11(3):274-8. Review. PubMed PMID:11377963.

An emerging theme in potential therapeutic approaches to treatment of SCA₃ disease is to go beyond just treating the symptoms of ataxia. Other treatments include proactively promoting the cellular process of autophagy (intracellular degradation system) and boosting proper protein folding.

Looks promising!

Before we go, what did we learn today?

- How to identify the most studied aspects of a rare disease.
- How to identify the gene mutation associated with SCA3 disease.
- Study the molecular genetics and pathogenesis of the SCA3 using the OMIM database link out from Pathway Studio.
- Data mining the scientific literature from Relations and References.
- Identification of small molecules involved in clinical trials for SCA3.
- Identification of potential small molecule and protein targets for therapeutic intervention for SCA3.

Study Questions 10

- 1. Find four proteins that are positively regulated by varenicline.
- 2. Find the top five diseases (by # of references) that are inhibited by varenicline.
- 3. Find cell processes affected by varenicline. How many of them? What are the top two cell processes (by # of references)?
- 4. How many total relations are in the Pathway Studio database for the rare disease "Evans Syndrome"?
- 5. What drug is currently in clinical trials for Evans Syndrome? What is the most studied drug (by # of references) that may be useful for the negative regulation of Evans Syndrome? At what target on what cell type is rituximab targeted?
- 6. What top three diseases (by # of references) are most associated with Evans Syndrome?
- 7. Based on information obtained in Questions 4 and 5, what is the most likely affected major tissue organ system in Evans Syndrome?

For Small Molecule Abundance, Clinical Trials, Functional Associations between Diseases, and Cell Processes, How Do I...

Exercise 10.1: What proteins regulate the synthesis or catabolism of a small molecule?

Identifies proteins involved in the translocation of a protein or small molecule target.

Step 1: Create New Pathway or within Pathway, select a protein(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein and Small Molecules" Relations: Select "MolTransport"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 10.2: What small molecules/drugs have been tested in clinical trials for a disease?

Identifies small molecules/drugs that have been involved in clinical trials. Drugs are included in ChemEffect Data. ClinicalTrial relations are included in DiseaseFx data. Monodonal antibodies are represented as small molecules in the ChemEffect database.

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Downstream

Step 5: Entities: Select "Small Molecule" Relations: Select "ClinicalTrial"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 10.3: What cellular processes are associated with a disease?

Identifies associations between cellular processes and diseases (no Direction in the relations).

Step 1: Create New Pathway or within Pathway, select disease

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Cell Process" Relations: Select "FunctionalAssociation"

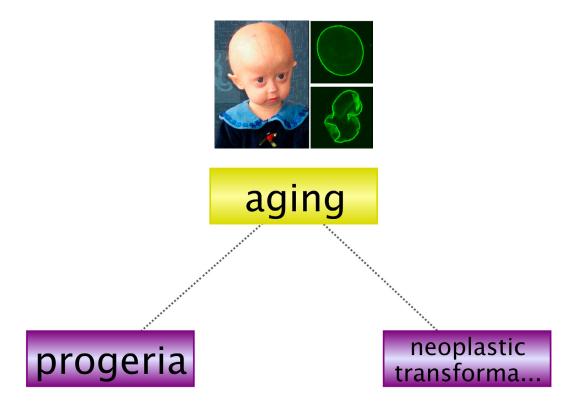
Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Further Study:

1. In this module, you identified three drugs already in clinical trials for SCA3. Of these, 4-phenyl butyrate was withdrawn prior to enrollment. The other two (lithium carbonate and varenicline) went to completion. Identify results in the literature for these two drugs. (Hint: Check the clinical trial record for the lithium publications and other Pathway Studio SCA3 relations for varenicline publications.)

Module 11

Progeria and Aging


Contents

11.1	Introduction 204
11.2	Hutchinson-Gilford progeria syndrome (HGPS) 204
11.3	Progeria, cancer, and aging 205
11.4	Progeria, All Relations 206
11.5	Progeria, cancer, and aging—shared relations 206
11.6	Progeria gene expression data
11.7	Progeria progression genes
11.8	Progression genes, SNEA, expression regulators 217
11.9	The proteasome endopeptidase complex and progeria 218
	Questions 11 221
Exercis	e 11.1: What is the role of a cell in disease/clinical parameter?
	e 11.1: What is the role of a cell in disease/clinical parameter? 222 e 11.2: How does a disease affect a certain cell type? 222
Exercis	
Exercis Exercis	e 11.2: How does a disease affect a certain cell type?
Exercis Exercis Exercis	e 11.2: How does a disease affect a certain cell type?
Exercis Exercis Exercis	222 323 324 325 326 326 327 328 329 321 321 322 323 323 324 325 326 327 328 329 321 323 323 323 323 323 323 323 323 323 324 325 326 327 328 329 329 321 321 321 322 323 323 323 323 324 325 326 327 328 329 329 329 3
Exercis Exercis Exercis Exercis	are 11.2: How does a disease affect a certain cell type? 222 are 11.3: What proteins affect cell function? 223 are 11.4: What small molecules affect cell function? 223 are 11.5: What proteins are expressed in a cell? What proteins are exposed at the surface 223

11.1 Definition of a Rare Disease

Progeria, an abnormal congenital condition, is associated with defects in the LAMIN TYPE A gene and is characterized by premature aging in children.

What are the connections between Progeria, aging, and cancer ?

It is a sobering fact of genetic study that a significant amount of our understanding of normal physiological processes is derived from the study of diseases in which things go wrong.

Single gene (monogenic), so-called Mendelian (inherited) defects are a particularly useful source for study because the ultimate genetic causal factor is known. Examples of these types of diseases include cystic fibrosis (due to mutations in Cystic Fibrosis Transmembrane Conductance Regulator [CFTR] gene) and sickle cell anemia (mutations in hemoglobin S).

11.2 Hutchinson-Gilford Progeria Syndrome (HGPS)

Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder that causes premature, rapid aging (the rate of aging is accelerated up to seven times that of normal) **shortly after birth.**

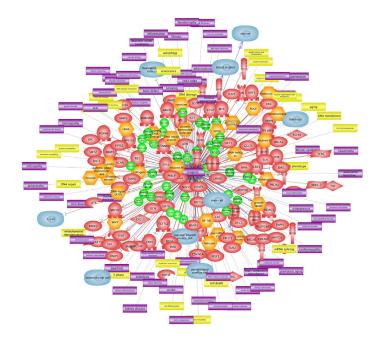
Individuals with HGPS have mutations in their LMNA gene that encodes lamin A and C, the A-type lamins, which are an important structural component of the nuclear envelope.

Incomplete processing of mutant lamin A (also called progerin) results in nuclear lamina abnormalities resulting in an age-dependent, cumulative, and ultimately devastating effect on nuclear architecture and function leading to spatial disorganization and transcriptional dysregulation.

Nevertheless, the question still remains:

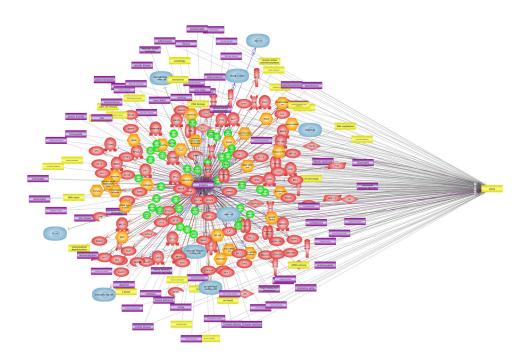
Why do LMNA mutant cells enter senescence earlier than normal cells?

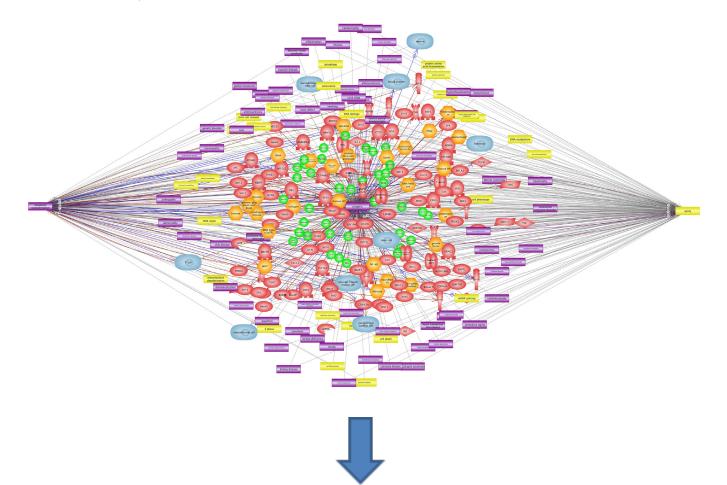
11.3 Progeria, Cancer, and Aging


One approach to this question is to perform a comparative literature analysis between the disease of progeria, the cell process of aging, and the disease of neoplastic transformation.

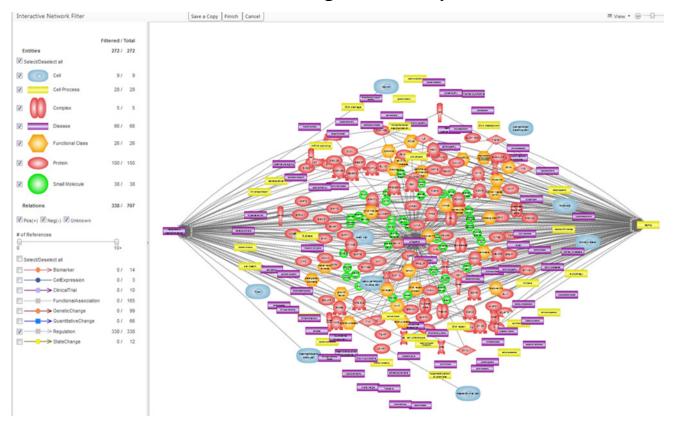
First step is to add all database relations to progeria:

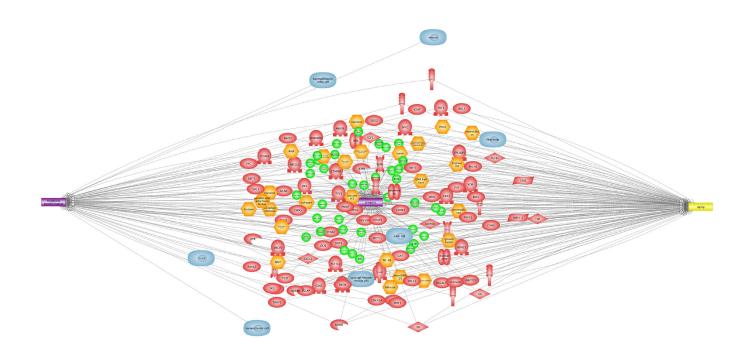
	Entities	Filter		Relations	Filter	
~	Cell	Add Condition		Binding	Add Condition	
~	Cell Process	Add Condition		Biomarker	Add Condition	
~	Clinical Parameter	Add Condition		CellExpression	Add Condition	
~	Complex	Add Condition		ChemicalReaction	Add Condition	
~	Disease	Add Condition		ClinicalTrial	Add Condition	
~	Functional Class	Add Condition		DirectRegulation	Add Condition	
~	Protein	Add Condition		Expression	Add Condition	
~	Small Molecule	Add Condition		FunctionalAssoc	Add Condition	
~	Treatment	Add Condition		GeneticChange	Add Condition	l
				miRNAEffect	Add Condition	
				MolSynthesis	Add Condition	
		arameter Add Condition CellExpression Add Condition ChemicalReaction Add Condition ClinicalTrial Add Condition ClinicalTrial Add Condition ClinicalTrial Add Condition DirectRegulation Add Condition Expression Add Condition Expression Add Condition FunctionalAssoc Add Condition GeneticChange Add Condition miRNAEffect Add Condition 				
			v	PromoterBinding	Add Condition	
C	Check All Unche	ck All Reset		Check All Unch	eck All Reset	
α	Back Next »	Reset All Filters			Cance	el
						-


11.4 Progeria, All Relations


Progeria – All Relations

11.5 Progeria, Cancer, and Aging—Shared Relations

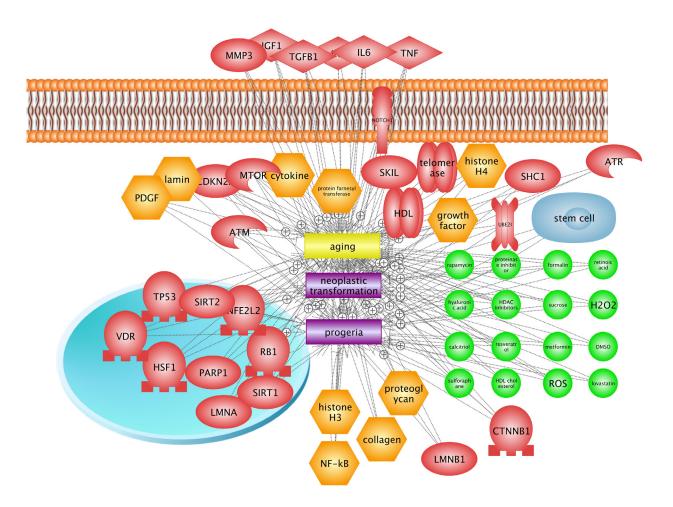

Next, in sequence, add in "aging" and "Relations between Selected and Unselected":



Then, add in "Neoplastic Transformation" and "Relations between Selected and Unselected":

Filter for Regulations only:

Select "Unconnected Entities," then edit "Remove":


View "Entity Table View", Sort "Local Connectivity", Ascending

(If column is not in Entity Table View, click on tab on any column header, go to Customize Table and Add Column to display).

Select and remove all entities with less than 3 connections.

(The rationale here is that we want only entities that are connected to all three targets; progeria, aging, and neoplastic transformation. This is a pretty good approximate method; some entities will sneak in on the basis of multiple connections to a single entity. Check stem cell for an example of this - then remove!)

100 3	Selected Deselect All			
	Name	Object Type	Total Connectivity	Local C
¥ 1	🗘 methylene blue	Small Molecule	1036	2
~	CDKN1A	Protein	6801	2
× 1	🗘 zoledronic acid	Small Molecule	1226	2
~	ELN	Protein	2058	2
~	arntl 3	Protein	1360	2
~	a) CXCL1	Protein	2502	2
× 1	🗘 Ionafarnib	Small Molecule	202	2
~	a) ICMT	Protein	188	2
~	BXS	Protein	495	2
•	🖏 gamma-glutamyltransferase	Functional Class	2008	2
~	MYC	Protein	8562	2
¥ 1	🗘 doxycycline	Small Molecule	3782	2
~	3 MIR9-1	Protein	1610	2
~	BRCC1	Protein	751	2
~ 1	🖗 fibroblast	Cell	11447	2
¥ ,	🗘 FTI-277	Small Molecule	222	2
•	🖏 DNA repair protein	Functional Class	550	2
~	a) SUV39H1	Protein	608	2
~	INSR	Protein	3479	2
¥ 1	🗘 camptothecin	Small Molecule	957	2
~	H2AFX	Protein	2192	2
~	CAT	Protein	5268	2
~	EZH2	Protein	2979	2
× 1	🗘 dihydrotachysterol	Small Molecule	47	2
~	RET	Protein	1392	2
~	HDAC1	Protein	3115	2
~	adipoq	Protein	4957	2
~	WRN	Protein	329	2
~	3 SIRT6	Protein	1050	2
-	ZMPSTE24	Protein	178	2
× 1	🗘 pravastatin	Small Molecule	1357	2
× 1	OT ATP	Small Molecule	9387	2

Return to Graph View and select "Layout by Localization, Plain Membrane."

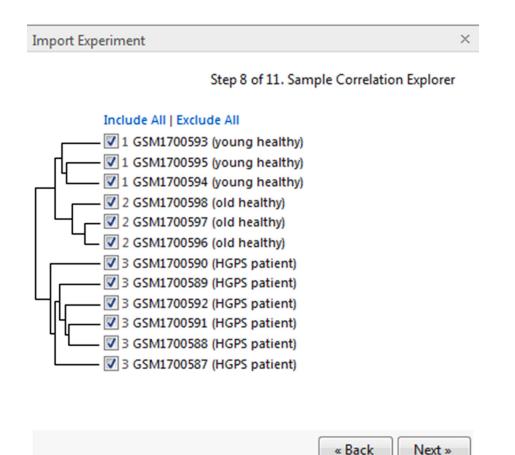
Select All, Tools, Enrichment Analysis, SNEA, Cell Processes.

	Gene Set Seed	Overlap	Percent Overlap	Overlapping Entities	p-value
	senescence	40	1	metformin, proteinase inhibit	9.20903E-51
* -	cellular senescence	37	2	metformin, CTNNB1, CDKN2A,	2.13369E-50
	aging	40	1	metformin, proteinase inhibit	5.49471E-49
	cell regeneration	33	2	metformin, CTNNB1, CDKN2A,	4.29845E-46
	mitotic entry	36	1	proteinase inhibitor, CTNNB1,	1.58458E-44
	cell renewal	29	3	metformin, proteinase inhibit	1.45328E-43
	protein processing	34	2	metformin, proteinase inhibit	1.66965E-43
	cellular stress response	27	4	proteinase inhibitor, CTNNB1,	6.27053E-43
	dedifferentiation	29	3	metformin, proteinase inhibit	6.92878E-43
	adipocyte differentiation	33	2	metformin, proteinase inhibit	2.26588E-42
	quiescence	29	3	metformin, proteinase inhibit	4.17508E-42

Select All, Tools, Enrichment Anal	ysis, SNEA, Diseases.
------------------------------------	-----------------------

Gene Set Seed 🔻	Overlap	Percent Overl	Overlapping Entities	p-value
progeria	37	50	metformin, proteinase inhibit	1.51866E-103
neoplastic transformation	37	2	metformin, proteinase inhibit	6.77341E-48
breast neoplasm	35	2	metformin, proteinase inhibit	1.25166E-43
skin cancer	29	3	metformin, proteinase inhibit	2.73584E-43
virus infection	35	1	metformin, proteinase inhibit	5.55773E-43
diet-induced obesity	31	3	metformin, CTNNB1, INS, RB1,	5.64549E-43
malignant transformation	33	2	metformin, proteinase inhibit	3.61593E-42
pancreatic neoplasm	25	4	metformin, proteinase inhibit	1.00071E-38
diabetic nephropathy	29	2	metformin, CTNNB1, INS, TGFB	1.94865E-38
hypertrophy	35	1	metformin, proteinase inhibit	6.67571E-38
atherosclerosis	36	1	metformin, proteinase inhibit	8.36620E-38
hyperplasia	33	1	metformin, proteinase inhibit	1.59165E-37

Clearly this gene set is critical for progeria, aging, and neoplastic transformation as we would expect from its construction. Now let's go get some gene expression data in order to explore this question further.

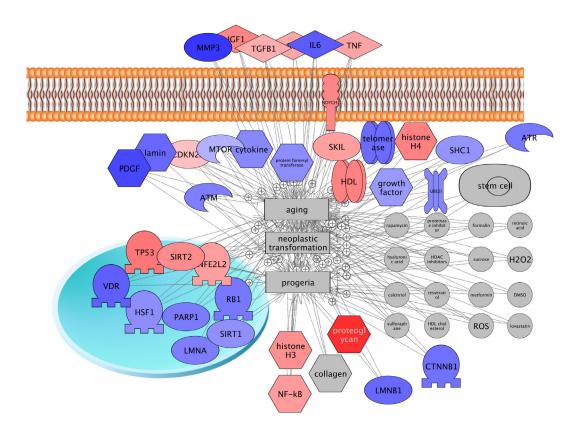

11.6 Progeria Gene Expression Data

Download the expression data set <u>GSE69391</u>, either directly from the GEO website or from Dropbox (<u>data for Module 11</u>). See Appendix 1.A for full import instructions.

"Remove" all columns except "Sample" and "Sample Type" at step 7 of the import process:

Import Experiment Sample Type: Intensity Experiment Name: GSE69391 Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Rename Remove Annotations: Sample Type: GSM1700587 HGPS patient GSM1700589 HGPS patient GSM1700590 HGPS patient GSM1700591 HGPS patient		Step 7 of 11. Expe				
Experiment Name: GSE93931 Description: Add/Remove Annotation: Add/Remove Annotation: Annotations: Sample Description: Sample Description: Sample Description: Sample Description: Sample Remove Annotation: Sample Remove Annotation: Sample Remove Human skin fibroblasts from Primary in vitro HGPS patient GSM1700539 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700539 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mGPS patient GSM1700591 HGPS	Sample Type:		riment properties			
Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Rename Annotations: Sample Description Source name tissue sample type GSM1700597 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient of SM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient of SM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient somple Type Intensity Description: Expression data from young and old healthy humans, as well as HGPS patient </td <td></td> <td>Intensity</td> <td>-</td> <td></td> <td></td> <td></td>		Intensity	-			
Add/Remove Annotation: Add Rename Remove Annotations: Sample Description Source name tissue sample type GSM1700597 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient Add/Remove Annotation: Add Remove Annotation: Add Remove Annotation: Add Remove HGPS patient GSM1700588 HGPS patient GSM1700588 HGPS patient GSM1700589 HGPS patient GSM1700589 HGPS patient GSM1700599	Experiment Name:	GSE69391				
Add/Remove Annotation: Add Rename Remove Annotations: Sample Description Source name tissue sample type GSM1700597 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 HGPS patient GSM1700581 HGPS patient GSM1700588 HGPS patient GSM1700588 HGPS patient GSM1700589 HGPS patient GSM1700599 HGPS patient GSM1700	Description:	Expression data	from young and old [healthy humans, as well as HGPS	natients	
Annotations: Sample Description Source name tissue sample type GSM1700587 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700589 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient K .	Chipton	Expression data	nom young und old	nearchy namens, as werras non s	puterto	
Add/Remove Annotation: Add/Remove Annotation: Add/Re	Add/Remove Annotation:	Add	Rename Remo	ve		
GSM1700587 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700588 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700599 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient sample Type Intensity Intensity Intensity Intensity Experiment Name: GSSE9391 Description: Experiment properties Add/Remove Annotation: <td< td=""><td>Annotations:</td><td>Sample</td><td>Description</td><td>Source name</td><td>tissue</td><td>sample type</td></td<>	Annotations:	Sample	Description	Source name	tissue	sample type
Solution 2005 and 200						
GSM1700589 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient Image: start of the s					-	
SSM1700590 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient GSM1700591 mRNA gene exp Human skin fibroblasts from Primary in vitro HGPS patient * more than the second		GSM1700589				_
Image: Constraint of the second se		GSM1700590				
 		GSM1700591	mRNA gene exp	Human skin fibroblasts from		
nport Experiment Step 7 of 11. Experiment properties Sample Type: Intensity Experiment Name: GSE69391 Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Rename Remove Annotations: Sample sample type GSM1700587 HGPS patient GSM1700588 HGPS patient GSM1700589 HGPS patient GSM1700599 HGPS patient GSM1700599 HGPS patient GSM1700599 HGPS patient GSM1700599 HGPS patient		•				•
Add/Remove Annotation: Add Rename Remove Annotation: Sample Type Experiment Name: SSEP 7 of 11. Experiment properties Intensity Experiment Name: SSEP 7 of 11. Experiment properties Intensity SEV Seport Experiment Name: SSEP 7 of 11. Experiment properties Sample Type State of the second se						
Step 7 of 11. Experiment properties Sample Type: Intensity Experiment Name: GSE69391 Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Rename Remove Annotations: Sample sample type GSM1700587 HGPS patient GSM1700589 HGPS patient GSM1700590 HGPS patient GSM1700591 HGPS patient						« Back Next »
Experiment Name: GSE69391 Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Annotations: Sample Sample sample type GSM1700587 HGPS patient GSM1700589 HGPS patient GSM1700590 HGPS patient GSM1700591 HGPS patient				V		
Description: Expression data from young and old healthy humans, as well as HGPS patients Add/Remove Annotation: Add Remove Annotations: Sample sample type GSM1700587 HGPS patient GSM1700588 GSM1700589 HGPS patient GSM1700590 GSM1700591 HGPS patient GSM1700591						
Add/Remove Annotation: Annotations: Annotations: Sample sample type GSM1700587 HGPS patient GSM1700589 HGPS patient GSM1700590 HGPS patient GSM1700591 HGPS patient	Sample Type:	Intensity				
Annotations: Sample sample type GSM1700587 HGPS patient GSM1700588 HGPS patient GSM1700590 HGPS patient GSM1700591 HGPS patient	Sample Type:	Intensity				
GSM1700587HGPS patientGSM1700588HGPS patientGSM1700589HGPS patientGSM1700590HGPS patientGSM1700591HGPS patient	Sample Type: Experiment Name:	Intensity GSE69391	•	healthy humans, as well as HGPS	patients	
GSM1700588HGPS patientGSM1700589HGPS patientGSM1700590HGPS patientGSM1700591HGPS patient	Sample Type: Experiment Name: Description:	Intensity GSE69391 Expression data f	rom young and old h		patients	
GSM1700589HGPS patientGSM1700590HGPS patientGSM1700591HGPS patient	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add	rom young and old h		patients	
GSM1700590 HGPS patient GSM1700591 HGPS patient	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add Sample	rom young and old h Rename Remov		patients	
GSM1700591 HGPS patient	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add Sample GSM1700587 GSM1700588	rom young and old h Rename Remov sample type HGPS patient HGPS patient		patients	
	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add Sample GSM1700587 GSM1700588 GSM1700589	rom young and old h Rename Remov sample type HGPS patient HGPS patient HGPS patient		patients	
CCM1700502 HCPC patient	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add Sample GSM1700587 GSM1700588 GSM1700589 GSM1700590	rom young and old H Rename Remov sample type HGPS patient HGPS patient HGPS patient HGPS patient		patients	
GSM1700592 HGPS patient	Sample Type: Experiment Name: Description: Add/Remove Annotation:	Intensity GSE69391 Expression data f Add Sample GSM1700587 GSM1700588 GSM1700589 GSM1700590 GSM1700591	rom young and old h Rename Remov sample type HGPS patient HGPS patient HGPS patient HGPS patient HGPS patient		patients	

The next step indicates that the samples are nicely clustered by phenotype:


Primary skin fibroblasts were harvested from young and old healthy humans, as well as HGPS patients.

We will be interested in the contrasts between HGPS and healthy cells (both young and old) as well as between old and young healthy cells.

Now when you open up the gene expression data set alongside our last saved pathway you will see this!

Step 1. Choose group of classes	1:		oose group	of classes 2
HGPS patient young healthy		HGPS pati	HGPS patient young healthy	
		young he		
old healthy		old health	ny	
Share 2. Add/Parataria Difference				
Step 3. Add/Remove Differen		. (Add	Remove
Name	Clas	sses 1	Classes 2	
Step 3. Add/Remove Differen Name HGPS patient vs young healthy HGPS patient vs old healthy	Clas	. (1	lthy

You'll notice right away that the network for progeria, aging, and neoplastic transformation is now colorcoded to the experimental data. It's using the data as selected in the data view column (in this case, the progeria versus young healthy fold changes). This feature can be toggled on/off using the "Link" button on the left-hand side of the data view ruler.

Now, go analyze your data!

Follow these steps!

- 1. Sort data in column 1, ascending, this will put downregulated genes at the top.
- 2. Under the View tab, "Hide Unmapped Probes".

3. Filter, "Probes by Value", select first column, hide probes within
-0.6 to 10 (this will, in effect, select probes with a logFC <

-0.6 or -1.5 fold or less),

hide probes with p-values exceeding o.o1 (this will in effect select probes with p-values < 0.01 or an FDR of 10%).

4. Select "Probes Remaining After Filtering", indicate in the pop-up box that the selection should apply to the "HGPS patient vs young healthy" column.

ilter Probes by Value	×
Select samples of interest:	Select All Deselect All
Name	
💌 膬 HGPS patient vs young healthy	A
🔲 👪 HGPS patient vs old healthy	
🔲 👪 old healthy vs young healthy	
GSM1700587	=
GSM1700588	
GSM1700589	
GSM1700590	
GSM1700591	
GSM1700592	
GSM1700593	
Filtering conditions (specify at least one - n	nin, max or p-value cutoff)
Hide probes within 🔽 range -0.	.6 to 10
Hide probes with p-values exceeding 0.0)1
	OK Cancel

5. All this work should result in the selection of approximately 1400 progeria downregulated genes (1408 to be exact).

Now we'll do some quick **SNEA** for diseases and cell processes to characterize the downregulated genes (access SNEA via the Tools dropdown box on the right side of the Experimental Data View ruler).

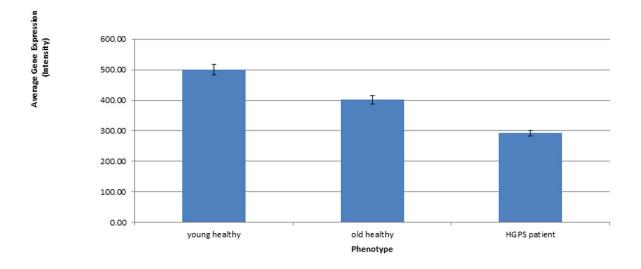
For diseases:

Gene Set Seed	Overl	Percent Over	Overlapping Entities	p-value
carcinogenesis	272	4	SIRPA, TRIM59, AGFG1, BCCI	1.13352E-71
malignant transformation	95	6	USP24, MLLT10, MGMT, RAP	1.24809E-31
metastasis	189	3	SIRPA, MGMT, JMJD6, DDX4	6.77140E-31
neoplastic transformation	102	5	RBM39, MGMT, TRRAP, PRK	3.68008E-30
neoplasm	325	2	SIRPA, LAMA4, TRIM59, BCCI	5.24672E-29

For cell processes:

Gene Set Seed	Overlap	Percent Overl	Overlapping Entities	p-value
chromatin remodeling	134	9	CLOCK, LBR, NIPBL, CHD2, T	1.41367E-52
cell cycle regulation	134	8	TRIM59, CLOCK, MGMT, BCC	8.85798E-47

So, the downregulated genes from this progeria data set are characterized by cancer genes, as well as genes involved in chromatin remodeling and cell cycle regulation.


As you inspect this data set, you will notice a curious thing. It appears that many of the Progeria downregulated genes are also downregulated in aging but just not as much.

In order to test this hypothesis computationally, we must first export the data for these genes for analysis using Excel. You don't have to do this yourself (although you are welcome to try!), you can simply download the results from Dropbox (<u>GSE69391 allSIG DR progression genes 04-20-17.xlsx</u>).

First, you'll average the gene expression for each phenotype group:

Progeria Down-regulated Genes Display an Intermediate Phenotype in Aging

It looks like you were right! It appears there is a trend of decreasing expression from young healthy -> old healthy -> Progeria for those genes (1,408), which are statistically significantly downregulated between Progeria and young healthy.

This is an exciting finding as it confirms a direct transcriptional link between Progeria and aging.

11.7 Progeria Progression Genes

It would really be interesting to examine these genes directly, but first, you need to separate out only those genes (out of the total 1,408 downregulated genes) that contribute to this pattern.

You can call them the "progression" genes.

You can identify them using a very simple computational algorithm that requires that the average expression for each gene be greater from young healthy to old healthy to Progeria (see formula in Excel spreadsheet).

Filter for just those genes and transfer them to the second sheet. You can see that fully 1,088/1,408 (or 77%) of the original downregulated genes conform to this pattern. Clearly, this represents an important trend in the data!

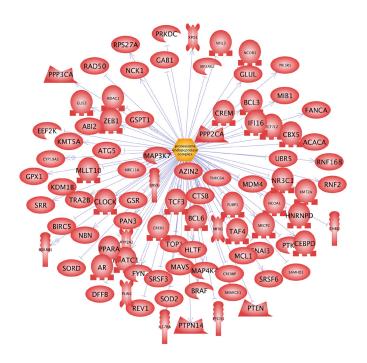
Now all we have to do is Copy/Paste (or ctrl C/ctrl V) these genes back into Pathway Studio (Import Entity List) for further analysis.

Now, let's do something a little bit different!

11.8 Progression Genes, SNEA, Expression Regulators

We'll perform a SNEA which identifies upstream expression regulators for these progression genes:

Enrichment Analysis of Select	ed childes	×
Input Objects:	NIPBL, RAP2B, DDX46, METTL7A, HNRNPUL1, C22orf39, DDX55, FAM175A, METTL21A, TBL1XR1, ERCC4, MYO9A, TBC1D31, FANCM, PPP1R21, ARID4A, Mir155hg, ZNF107,	
Analysis Type:	Find Sub-Networks Enriched with Selected Entities	
p-value ≤	0.05	
Min Overlap:	1	
	Include only overlapping entities in Pathways	
Max Networks:	100	
Neighbors:	Expression Targets	
	miRNA Targets	
	Chemical Expression Targets	
	Binding Partners	
	Protein Modification Targets	
	Disease Biomarkers (Quantity)	
	Disease Biomarkers (Mutations)	
	Proteins/Chemicals Regulating Diseases	
	Proteins/Chemicals Regulating Cell Processes	
	Custom Select types	
	Find Ca	ancel



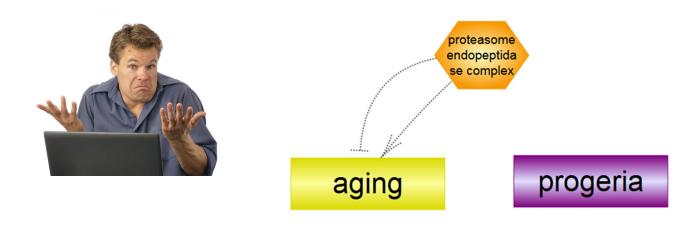
The expression of a large number (84) of the progression

genes appears to be influenced by the proteasome endopeptidase complex (p-value < E-7):

	Gene Set Seed	Overlap	Percent Over	Overlapping Entities	p-value
\rightarrow	proteasome endopeptidase	84	6	MLLT10, PAN3, CLOCK, SOR	6.96636E-6
	KCNN2	3	75	NRF1, TFAM, AXL	2.40281E-4
	ubiquitin	52	6	CLOCK, MGMT, BIRC5, BMP	2.92039E-4
	TP53	71	5	MGMT, RAP2B, HNRNPUL1,	3.89700E-4
	ubiquitin-protein ligase	31	7	PPP2CA, SAV1, NR3C1, HDA	4.71147E-4

Progression genes whose expression is influenced by the proteasome endopeptidase complex:

11.9 The Proteasome Endopeptidase Complex and Progeria


Is there a direct connection between this complex and Progeria?

proteasome endopeptida se complex		progeria	
Network Builder			×
Step 3: Setup Preview	Please select other parameters.		
Potential Connections Entites: 0 Relations: 0			
Applied Relation Filters Binding× ChemicalReaction× Expression× miRNAEffect× PromoterBinding× Regulation×	Biomarker× ClinicalTrial× FunctionalAssociation× MolSynthesis× ProtModification× StateChange×	CellExpression× DirectRegulation× GeneticChange× MolTransport× QuantitativeChange×	

Test this by selecting both entities (in a new pathway) and then, "Add, Direct Interactions, All"

And the answer is that we can find none at this time in the Pathway Studio database.

What about between the proteasome endopeptidase complex and aging?

Regulation (negative) proteasome endopeptidase complex ---| aging

121 references

Because the proteasome plays an essential role in cellular processes, an age-associated decline in proteasome function is assumed to contribute to the development of age-related pathology and to the aging process itself.

An age-related decrease in proteasomal activity has been assumed to be involved in the aging process and the development of age-related pathology.

It has previously been reported that the proteasome exhibits declines in function during cardiac ischemia/reperfusion and aging. Well, actually there is substantial evidence for a connection between a loss of proteasome function and the "development of age-related pathology".

And now we've identified a similar new connection between proteasome function and progeria directly from gene expression data.

And that's not bad for a day's work!

Before we go, what did we learn today?

- The importance of single gene (monogenic) inherited defects for studying normal physiological function.
- How to combine entities and relations between diseases (progeria and cancer) and a cell process (aging).
- How to integrate gene expression data into a disease model for progeria.
- Identification of progression genes between young healthy, old healthy, and progeria patients.
- How to use a SNEA for the identification of enriched upstream regulators of gene expression.
- Identification of a new connection between deteriorating proteasome function, aging, and progeria.

Study Questions 11

Before answering the questions:

- Read in the gene expression data set provided, calculate downregulated significant genes for HGPS versus young/healthy and old/healthy versus young/healthy. Save each pathway separately. Use significance criteria as outlined in the module to answer the following questions:
- 1. Combine the two pathways above and find the intersection. Save the resulting overlapping genes. Run an SNEA for diseases on this group. What is the top enriched disease (by p-value)? Run an SNEA for cell processes on this group. What is the top enriched cell process (by p-value)?
- 2. Subtract the "old/ healthy versus young/healthy" pathway from the "HGPS versus young/healthy" pathway and save the result. Run an SNEA for diseases on this group. What is the top enriched disease (by p-value)? Run an SNEA for cell processes on this group. What is the top enriched cell process (by p-value)?
- 3. For the SNEA cell process "cell survival" group from Question 2, what are the top three (by p-value) expression regulators? (Hint: SNEAS expression regulators)
- 4. How many genes/proteins are in the top group from Question 4? How many of these genes are also connected to the cell process of aging? (Hint: Check local connectivity for genes/proteins linked to both aging and cell survival.) What are the top five genes/proteins (by # of references) in this group for aging?
- 5. A mutation in which the five genes from Question 4 can directly cause Progeria? (Hint: Reassociate Progeria with the five genes from Question 4.)

For Cell Interactions, How Do I...

Exercise 11.1: What is the role of a cell in disease/clinical parameter?

Finds what role cells(s) have in Clinic Parameters and Diseases.

Step 1: Create New Pathway or within Pathway, select cell(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Clinic Parameters and Disease " Relations: Select "Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 11.2: How does a disease affect a certain cell type?

Finds effects of a disease on cell(s).

Step 1: Create New Pathway or within Pathway, select a disease(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Cell" Relations: Select "Biomarket and QuantitativeChange and Regulation and StateChange"

Exercise 11.3: What proteins affect cell function?

Finds how proteins regulate cell functions.

Step 1: Create New Pathway or within Pathway, select cell(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: Upstream

Step 5: Entities: Select "Protein, Complex, and Functional Class " Relations: Select "Regulation"

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 11.4: What small molecules affect cell function?

Finds how small molecules regulate cell functions.

Step 1: Create New Pathway or within Pathway, select a cell(s) and or cell process(es)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction:Upstream

Step 5: Entities: Select "Small Molecule Class " Relations: Select ""Regulation"

Exercise 11.5: What proteins are expressed in a cell? What proteins are exposed at the surface of the cell?

Finds what proteins have cell expersions relations or are exposed at the surface of a cell.

Step 1: Create New Pathway or within Pathway, select a cell(s)

Step 2: Select Add- > Network Builder

Step 3: Select Expand Pathway, Advanced Expand Pathway Tool

Step 4: Select Direction: All

Step 5: Entities: Select "Protein" Relations: "CellExpression"

Add condition: Mechanism "is equal to" surface

Continue to Network Builder Step 5 and click Launch Interactive Network Builder or Finish

Exercise 11.6: What proteins/small molecules are secreted from the cell?

Finds what proteins secrete a specific proteins and/or small molecules

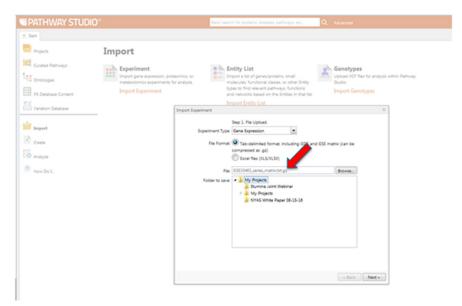
- **Step 1:** Create New Pathway or within Pathway, select a cell(s)
- **Step 2:** Select Add- > Network Builder
- Step 3: Select Expand Pathway, Advanced Expand Pathway Tool
- Step 4: Select Direction: Downstream
- Step 5: Entities: Select "Protein or SmallMolecule" Relations: "MolTransport"

Exercise 11.7: What proteins are secreted from the tumor cell?

Identifies what proteins are secreted from cancers.

- Step 1: Create New Pathway or within Pathway, select Disease
- Step 2: Select Add- > Network Builder
- Step 3: Select Expand Pathway, Advanced Expand Pathway Tool
- Step 4: Select Direction: Downstream
- Step 5: Entities: Select "Protein, Complex, and Functional Class " Relations: Select "QuantativeType"

Add condition: QuantitativeType "is equal to" secretion



The simplest way to get data into Pathway Studio is by direct import from GEO.

GSE33463

Download file either directly from the GEO website or from Dropbox (<u>GSE33463_series_matrix.txt</u>). Import to your home directory and browse to file in Pathway Studio "Import Experiment."

Appendix 1.A

Data Import from the Gene Expression Omnibus (GEO)

Getting gene expression data (microarray and RNASeq data) successfully into Pathway Studio.

Pathway Studio can import gene expression data directly from GEO or from a tabdelimited spreadsheet file. Import is designed to be highly flexible, allowing userdefined location of key fields and column designations.

So you can.....

And Follow the Yellow Brick Road !

(the 11-step program)

And Follow the Yellow Brick Road!

05125 7.663 8.289 8.289 8.2642 7.8437 7.6646 05125 7.653 8.0013 7.9411 7.801 8.4347 8.1397 1LMN_1651232 8.6544 8.0088 8.033 7.9411 7.801 8.4347 8.1397 1LMN_1651232 8.6071 7.9402 7.9504 8.051 7.8703 7.8625 7.8844 ILMN_1651235 8.0071 7.9402 7.9504 8.051 7.8703 7.8625 7.8844 ILMN_1651237 7.8744 8.0005 7.9771 8.0977 8.0995 8.6099 ILMN_1651237 7.8744 8.0005 7.9771 8.0977 8.0997 8.0995 8.6099 ILMN_1651237 7.8533 7.6692 8.0107 7.8461 7.9656 7.9907 7.7296 ILMN_1651252 7.8533 7.6692 8.0107 7.8461 7.9565 7.9907 7.7296 ILMN_1651252 12.1556 10.325 10.325 10.325 10.9914 10.2079 * * * * * * * *								
No header row \$2323 \$7.167\$ \$7.197\$ \$6.8776 \$6.8776 \$6.4776 \$6.4676 \$7.2075								
343291 17.167 17.1925 16.8778 16.6716 16.4631 17.2019 17.1884 343291 17.167 17.1925 16.8778 16.6716 16.4631 17.2019 17.1884 343202 17.167 17.1925 16.8778 15.6126 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 7.9557 7.9551 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9657 7.9551 7.9651 7.9651 7.9671 8.9077 7.9214 8.343 7.7077 8.9276 8.3651 7.9703 7.6626 7.9771 8.9077								
343291 17.167 17.1925 16.8778 16.6716 16.4631 17.2019 17.1884 343291 17.167 17.1925 16.8778 16.6716 16.4631 17.2019 17.1884 343202 17.167 17.1925 16.8778 15.6126 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 63.482766 7.9557 7.9551 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9651 7.9657 7.9551 7.9651 7.9651 7.9671 8.9077 7.9214 8.343 7.7077 8.9276 8.3651 7.9703 7.6626 7.9771 8.9077								
34325 13.2 54329 13.2 54329 13.2 54320 12.2 54320 12.2 54320 12.2 54320 12.2 54320 12.2 54320 12.2 54321 13.3 54322 14.6 54322 14.6 11.0 12.4 11.0 13.4 54322 14.6 11.0 13.4 12.2 14.6 13.4 13.4 13.4 13.4 13.4 13.4 13.4 14.6 13.4 14.6 13.4 14.6 14.0 14.5 14.0 14.5 14.0 14.5 15.2 14.6 15.2 14.6 15.2 14.6 15.2 14.6 15.2 14.6 15.2 14.6 15.2 14.6 14.2 14.2								
65110 7.011 Step 3 of 11. Select first data row. 65120 8.12 Step 3 of 11. Select first data row. 65120 8.12 8.12 Step 3 of 11. Select first data row. 65120 8.12 8.12 Step 3 of 11. Select first data row. 65120 8.13 65120 17.3025 17.3025 16.4734 16.4631 17.2010 55169 13.6451 65120 9.12 13.5162 11.5122 11.5146 12.423 11.372 15.516 13.6451 65120 7.77 7.8177 7.9538 7.9515 7.9634 1.232 65123 7.77 7.8177 7.9177 7.9187 7.9645 7.9477 85127 7.77 1.814 8.0763 7.9039 8.0247 7.8137 8.6433 7.1717 85123 7.677 1.845120 7.7235 7.9638 8.2899 8.2642 7.8347 8.0037 85123 7.6781 8.0071 7.9452 7.9594 8.0517 7.8318 7.8027 8.0055 8.6029 8.0045 8.6029 8.00451 8.6029								
65120 8.12 Step 3 of 11. Select first data row. 65120 7.72 65120 7.72 65120 7.72 65120 7.72 100 11.432291 17.1875 17.3925 16.6773 16.6451 17.2019 17.1884 65120 7.72 11.54129 19.152 13.612 11.9146 12.425 11.872 15.515 7.6647 7.9177 7.818 7.7514 8.343 7.1717 7.6647 7.8175 7.818 7.6447 7.9177 7.6643 7.6647 7.8175 7.8133 7.6296 7.8237 7.6646 8.2642 7.8337 7.6647 8.2642 7.8337 7.6647 8.2642 7.8337 8.00257								
D. REF GSAM27665 GSAM27667 GSAM27067 GSAM2707 JIAS7								
651221 8.13 65122 0.0002/000 0.0002/00 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
651228 1640 17.4929 17.4929 17.4929 17.4929 17.4929 17.4929 651229 9.17 11.413295 13.2566 13.4522 11.9146 12.423 11.8728 13.5163 13.4651 651229 9.17 11.MPL (551209 81.1231 8.1457 7.3957 7.9558 7.9518 7.9614 651226 7.07 10.MPL (551200 8.1231 8.1457 7.3337 8.0147 7.9728 7.9608 8.1232 11.MPL (551220 7.7213 7.9133 7.9778 7.9647 7.9177 7.8618 7.7644 11.MPL (551220 7.7223 16.9012 16.9221 16.5236 16.0009 15.9849 16.48343 7.1779 11.MPL (551220 7.7285 7.9633 8.2805 8.2809 8.2642 7.4337 7.6646 11.MPL (551237 7.8764 8.0051 7.8703 7.8625 7.8844 10.025 7.9714 8.4547 8.1029 11.MPL (551237 7.8744 8.0026 7.9770 8.0027 7.833 7.8625 7.8844 10.925 10.3255 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
651229 9.1.72 ILANU_L651199 7.9112 7.8667 7.9547 7.9057 7.9558 7.9515 7.9614 651220 7.72 ILANU_L651209 8.1231 8.1487 7.8337 8.0147 7.9728 7.9688 8.1232 651225 6.6401 ILANU_L651209 7.2213 7.9013 7.9778 7.9647 7.9177 7.8488 7.7644 651256 7.876 ILANU_L651220 7.2213 7.9012 16.5236 16.6069 15.849 16.8433 17.1779 ILANU_L651220 11.231 8.9327 8.153 8.4229 8.2749 8.1575 8.6043 ILANU_L651220 7.7285 7.9633 8.2885 8.2889 8.2642 7.8437 7.6646 ILANU_L651237 7.8763 ILANU_L651237 7.8763 8.6071 7.9423 7.8005 8.0997 8.0957 8.0957 8.0957 8.0055 7.8064 7.9077 7.9964 8.0097 8.0955 8.0097 8.0055 7.8014 8.0097 8.0957 8.0057 7.8014 8.0097 8.0055 7.8025 8.10291								
651220 7.726 651220 7.726 651220 8.466 1LMNL1651220 8.1231 8.1467 7.8377 8.1467 7.8377 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1467 7.9378 8.1471 8.437 8.1471 8.4219 8.1471 8.4219 8.1471 7.8418 8.1471 7.8418 8.1471 7.8421 8.1471 7.8423 8.1471 7.8423 8.1471 7.8423 8.1471 7.8423 8.1497 1.8475 <								
651222 8.466 651225 8.007 651225 8.007 651235 8.007 651235 8.007 651235 8.007 651235 8.007 81.001 1651221 8.1344 8.0763 7.9839 8.0377 7.9714 8.343 7.9657 81.001 1651221 16.63012 16.2356 16.0069 15.5849 16.8343 11.1779 851236 7.623 8.3085 8.2080 8.3442 7.4437 7.6646 18.041.1651227 9.1273 8.9927 8.153 8.4219 8.2749 8.1357 8.6042 18.041.1651226 7.2854 8.0081 8.033 7.9411 7.881 8.4547 8.1307 18.041.1651227 7.8748 8.0081 7.8733 7.8655 7.8844 8.0951 7.8703 7.8625 7.8844 18.041.1651237 7.8747 7.0335 7.8659 7.7214 7.4039 7.9077 7.2265 8.1029 18.041.1651247 7.4533 7.4692 8.0107 7.4843								
651225 8.007 1LMRU_1651221 8.1344 8.0763 7.9839 8.0377 7.9714 8.343 7.9657 1LMRU_1651222 16.8012 16.922 16.5236 16.0069 15.9849 16.8343 17.1779 1LMRU_1651220 9.1273 8.9327 8.133 8.4219 8.2749 8.1357 8.6043 651236 7.637 1LMRU_1651220 9.1273 8.0026 8.0333 7.9411 7.0811 8.4347 8.1437 651235 7.657 1LMRU_1651223 7.4646 8.0033 7.9411 7.8011 8.4347 8.1057 1LMRU_1651237 7.8796 8.0471 7.9422 7.9504 8.051 7.8703 7.8625 7.8844 1LMRU_1651237 7.4776 8.0471 7.4233 7.2231 7.4005 8.00958 8.00597 8.0027 7.8263 8.1029 1LMRU_1651237 7.4533 7.6052 7.07833 7.6569 7.7281 7.4313 7.6097 7.2268 1LMRU_1651237 7.4583 7.6092 8.0107 7.8461 7.9656 7.3907			×					
651226 7.870 651226 7.870 651227 7.870 651237 7.870 651237 7.871 651237 7.871 651237 7.872 651237 7.872 651237 7.872 651237 7.673 81283 7.621 81283 7.621 81283 7.623 81283 7.623 81283 7.623 81283 7.623 81283 7.623 81283 7.623 81283 7.6244 81283 7.623 81284 7.373 81284 7.373 81284 7.373 81284 7.3737 81284 7.3737 81284 7.8768 81284 7.4277 81284 7.6924 81284 7.6924 81284 7.6925 81284 7.6926 81284 7.6927 81284 7.6926								
651237 7.874 651237 7.627 651237 7.627 651237 7.628 1X,MNL,1651232 8.4654 8.008 8.209 8.2442 7.4377 7.6646 651237 7.638 8.0013 7.9411 7.801 8.4347 6.1097 1X,MNL,1651232 8.0471 7.9482 7.9504 8.0517 7.8703 7.8625 7.8804 1X,MNL,1651237 7.8744 8.0205 7.9771 8.0977 8.0997 8.0995 8.6099 1X,MNL,1651237 7.8744 8.0205 7.9771 8.0977 8.0997 8.0995 8.6099 1X,MNL,1651237 7.8783 7.6692 8.0107 7.8646 7.9907 7.2903 7.2203 1X,MNL,1651237 7.6583 7.6992 8.0107 7.8461 7.9907 7.2903 8.1029 1X,MNL,1651234 12.1258 12.1258 12.1258 10.325 10.325 11.9191 12.2079 * * * * * * * * * * * * *	Γ.		1					
651223 7.6.72 (5124) 11.MRU_1651230 7.7285 7.9633 8.2805 8.2809 8.2642 7.4373 7.6646 651243 7.735 11.MRU_1651232 8.4654 8.0088 8.033 7.9411 7.801 8.4347 8.1307 11.MRU_1651232 8.4654 8.0088 8.033 7.9411 7.801 8.4347 8.1307 11.MRU_1651235 8.0071 7.9442 7.9504 8.051 7.8703 7.8645 7.8844 11.MRU_1651237 7.8744 8.0005 7.9771 8.0097 8.0092 8.00924 8.00921 11.MRU_1651237 7.8744 8.0005 7.9771 8.0027 7.8263 8.1029 11.MRU_1651237 7.8743 7.6092 8.0107 7.4443 7.9656 7.9507 7.2263 11.MRU_1651236 12.1256 10.325 10.325 10.325 11.9191 12.0799 • • •	1827669 GSM82	27620 64152	1					
651249 7.73 ELMPL_1651232 8.4654 8.0008 6.033 7.9411 7.0811 8.4347 8.1307 ELMPL_1651232 8.0071 7.9442 7.9504 8.051 7.8703 7.8625 7.8844 ELMPL_1651235 8.0071 7.9442 7.9504 8.051 7.8703 7.8625 7.8844 ELMPL_1651237 7.8706 8.0471 7.3423 7.8213 7.8006 8.00924 8.00921 ELMPL_1651237 7.8744 8.0005 7.9771 8.0097 7.4031 7.7097 ELMPL_1651237 7.8738 7.6092 8.0107 7.4443 7.9656 7.9507 7.2263 ELMPL_1651254 12.1258 12.1356 10.325 10.3764 3.0253 11.9191 12.0799 ILMPL_1651254 12.1258 12.1356 10.325 10.3764 8.0027 7.8263 8.1029 ILMPL_1651254 12.1258 12.1356 7.0355 7.8264 7.9076 8.122 ILMPL_1651252 12.1356 10.325 10.3797 7.8 8.1029 ILMPL_1651252 </td <td>631 17.201</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	631 17.201							
631/33 7.89 ILMPL[1651235 8.0071 7.9482 7.9504 8.051 7.8703 7.8615 7.8844 ILMPL[1651235 7.8776 8.0471 7.8423 7.2233 7.8036 8.0924 8.0951 ILMPL[1651237 7.8744 8.0205 7.9771 8.0977 8.0997 8.0905 8.6059 ILMPL[1651237 7.8733 7.4635 7.7833 7.6659 7.7214 7.4331 7.7067 ILMPL[1651237 7.6533 7.6926 0.0107 7.8463 7.9556 7.7907 7.7226 ILMPL[1651253 7.5833 7.6092 0.0107 7.8463 7.9556 7.7907 7.7226 ILMPL[1651254 12.1258 12.1256 10.325 10.3964 10.233 11.9191 12.0799 ILMPL[1651252 7.874 8.002 7.8744 8.0027 12.8396 17.3475 13.4222 ILMPL[1651253 7.6532 7.6533 7.853 7.8543 13.4222 13.4427 ILMPL[1651253 7.8542 12.1258 12.1258 12.1258 13.2356 13.4427 <	728 13.516							
LLMNL_1651237 7.8744 8.0205 7.9771 8.0977 8.0997 8.0905 8.6099 LLMNL_1651238 7.6277 7.6335 7.7833 7.6659 7.7281 7.4331 7.7097 LLMNL_1651238 7.6277 7.6335 7.7833 7.6659 7.7286 8.0027 7.2263 8.1029 LLMNL_1651253 7.6583 7.6092 8.0107 7.8461 7.9656 7.7907 7.7296 LLMNL_1651254 12.1258 12.1586 10.325 10.37864 10.253 11.9191 12.0709 * Back Net * BAML_1652227 7.8744 8.0 LLML_165228 7.6277 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6333 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6333 7.6 LLML_165228 7.6277 7.6 LLML_165228 7.6333 7.6 LLML_165228 7.6333 7.6 LLML_165228 7.6333 7.6 LLML_165228 7.6273 7.7248 LLML_165229 7.2723 1.3236 13.6122 LLML_165229 7.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 9.2723 8.9277 LLML_165229 7.6033 LLML_165229 7.6031 10.001 16.921 LLML_165229 7.6031 16.921 LLML_165229 7.6031 10.001 16.921 LLML_165229 7.6031 10.921 LLML_165229 7.6031 16.921 LLML_165229 7.6031 16.921 LLML_165229 7.6031 16.921 LLML_165229 7.6031 16.921 LLML_165229 7.6031 16.921 LLML_165229 7.60	58 7.9515							
ILANU,1651238 7.6277 7.6335 7.7833 7.6659 7.7281 7.4331 7.7097 ILANU,1651249 7.7379 7.8338 7.8268 7.7828 6.0027 7.8263 8.1029 ILANU,1651251 7.6583 7.6092 8.0107 7.8463 7.9656 7.7907 7.7286 ILANU,1651254 12.1258 12.1526 10.325 10.3964 10.253 11.9191 12.0799 * m * Maxu,1651257 7.8744 6.6			- 101			×		
LLMU_1651249 7.7379 7.8318 7.8268 7.7828 8.0027 7.8263 8.1029 LLMU_1651253 7.6583 7.6092 8.0107 7.8461 7.9656 7.3907 7.7296 LLMU_1651254 12.1258 12.1586 10.325 10.3964 10.253 11.9191 12.0789 * Back Net * BLMU_1651257 7.8746 8.6 LLMU_1652257 7.8747 7.6 LLMU_1652257 7.8759 5.32586 13.61422 LLMU_1652257 7.8759 7.4 LLMU_1652257 7.2713 7.9513 LLMU_1652257 7.4583 7.6 LLMU_1652257 7.4583 7.4 LLMU_1652257 7.4583 7.4 LLMU_1652257 7.4 LLMU_16552258 7.4 LL								
LLANU_1651253 7.6583 7.6092 8.0107 7.8461 7.9656 7.7907 7.7296 LLANU_1651254 12.1258 12.1596 10.325 10.3964 10.253 11.9191 12.0799 * m BANU_1651254 12.1258 12.1596 10.325 7.8796 8.6 LLANU_1652227 7.8746 8.6 LLANU_1652228 7.8796 8.6 LLANU_1652228 7.8797 7.2 LLANU_1652238 7.6277 7.3799 7.2 LLANU_1652238 7.6283 7.6 LLANU_1652238 7.6583 7.6 LLANU_1652238 7.6583 7.6 LLANU_1652238 7.6583 7.6 LLANU_1652238 7.6583 7.6 LLANU_1652238 7.6583 7.6 LLANU_1652238 12.1258 12 LLANU_1652228 12.1258 12 LLANU_1652228 12.1258 12 LLANU_1652228 12.1258 12 LLANU_1652228 12.1258 12 LLANU_1652228 12.1258 12 LLANU_1652228 16.8012 16.921 LLANU_1652228 16.9012 16.921 LLANU_1652228 16.9012 16.921 LLANU_1652228 16.9012 16.91	st sample colum	w.						
ILMU 1651254 12.1258 12.1356 10.325 10.3964 10.253 11.9191 12.0799 * * Back Next *	Sample 1							
Image: Source of the	Sample) 1							
BANU, 1653,226 7.8796 6.6 BANU, 1653,227 7.8744 6.6 BANU, 1653,227 7.8744 6.6 BANU, 1653,228 7.6777 7.6 BANU, 1653,228 7.6777 7.6 BANU, 1653,228 7.67379 7.7 BANU, 1653,228 7.6533 7.6 BANU, 1655,228 7.6533 7.6 BANU, 1655,228 12.3256 13.2586 13.4522 BANU, 1655,228 12.3256 12.427 13.047 BANU, 1655,229 12.3256 12.427 13.0427 BANU, 1655,229 12.3256 12.427 13.0427 BANU, 1655,229 12.3256 12.427 13.0417 BANU, 1655,229 12.323 8.1447 13.0416 BANU, 1655,229 12.323 14.97 13.0416 BANU, 1655,229 12.323 14.97 13.0416 BANU, 1655,229 12.323 14.97 13.0416 BANU, 1655,229 12.323 14.927 14.927 BANU, 1555,22	osition 0							
ILAMU, L653.226 7.0796 6.6 ILAMU, L653.227 7.8744 8.6 ILAMU, L653.228 7.6777 7.6 ILAMU, L653.228 7.6777 7.6 ILAMU, L653.228 7.67379 7.4 ILAMU, L653.228 7.6533 7.6 ILAMU, L653.228 12.3256 13.2356 13.45422 ILAMU, L653.238 12.3256 12.3256 13.2356 14.417 ILAMU, L653.228 12.3256 12.3256 13.2354 8.447 ILAMU, L653.228 12.3256 12.3256 13.2354 8.447 ILAMU, L653.228 12.3256 12.3256 13.2354 8.4074 ILAMU, L653.228 12.3256 12.3256 14.92 14.91 ILAMU, L653.229 12.3256 12.3256 14.92 14.91 ILAMU, L653.229 12.3256 14.92 14.91 14.91 ILAMU, L653.229 12.3256 14.92 14.91 14.91 ILAMU, L653.229 13.2354 14.91 14.91 14.91 ILAMU, L653.229 14.92 14.91 14.91 14.91 <th>position 0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	position 0							
ILMN, 16532277 7.0744 607.867 G384027665	POHDON -							
BANK_1651228 7,6277 7,7 BANK_1451232 17,3292 17,3292 17,3292 BANK_1651249 7,3779 7,4 BANK_165129 7,3123 13,2506 13,6122 BANK_1651253 7,6583 7,6 RAWL_165129 7,313 8,1457 BANK_1651204 12,1256 12 12,1256 12 12,1256 12,1256 Comparison 12,1256 12,1256 12,1256 12,1256 12,1256 12,1256 12,1256 BANK_1655120 7,7213 7,9113 14,147 16,921 16,921 16,921 BANK_1655120 7,7285 7,9633 18,1447 16,921 16,921 16,921 BANK_1655120 7,7285 7,9633 18,1441,1651220 7,7285 7,9633 BANK_1655120 7,7285 7,9633 18,1441,1651220 7,7285 7,9633 BANK_1655120 7,7285 7,9633 18,1441,1651220 7,7285 7,9432 BANK_1655126 7,8956 8,0471 18,041,165126 17,4926 18,041	66 GSM827667	G\$M827668	G5M82766	9 GSM8276	670 GSM827	A		
LANN, 1653240 7.3779 74 LANN, 1653253 7.6583 76 LANN, 1653254 12.1250 12 KANN, 1653256 12.1250 12 KANN, 1653220 7.213 7.913 12.1250 12 KANN, 1653220 7.213 7.913 12.1250 12 LANN, 1653220 7.213 7.913 12.1250 12 LANN, 1653220 7.225 7.9533 12.1250 12 LANN, 1653220 7.7285 7.9633 12.1250 12 LANN, 1653220 7.7285 7.9642 12.1250 12.1250 12 LANN, 1653220 7.7285 7.9642 12.1250 12.	Import Experim	10.0710	10 10 22	17.500				
RAMU_655253 7.6533 7.4 RAMU_655254 12.1258 121 K MAN_6551254 12.1258 121 RAMU_6551250 7.7213 7.9113 RAMU_6551250 7.7285 7.9633 RAMU_6551250 7.7285 7.9633 RAMU_6551250 7.7285 7.9633 RAMU_6551250 7.7285 7.9633 RAMU_6551250 7.7285 7.9633	subout obtains	ing ring						
ILMM_L653254 12.3256 12 K.MM_L653226 7.7213 7.9313 ILMM_L653227 8.3544 8.0763 ILMM_L653227 9.1273 8.9327 ILMM_L653229 9.1273 8.9327 ILMM_L653229 7.7285 7.9633 ILMM_L653229 2.4654 ILMM_L653226 7.7285 7.9482 ILMM_L653226 7.7285 8.0071 7.9482			Step 6 of 1	1. Select last	column of la	ist sample.		
ILMML_16551221 8.1344 8.0763 ILMML_1651228 16.8012 16.921 ILMML_1651229 9.1273 6.9377 ILMML_1651230 7.7285 7.9633 ILMML_1651232 8.4054 6.0008 ILMML_1551235 5.0071 7.9482 ILMML_155225 7.4326 6.0471	G5M827797	C.53.82 37348 (COL8377900	G5M82780	G GSM82780	COL83728/	02 GSM82780	3 (SAR7)
ILAMA_1651228 16.3012 16.921 ILAMA_1651229 9.3273 8.9327 ILAMA_1651220 7.2285 7.9633 ILAMA_1651220 0.4654 8.0001 ILAMA_1551235 0.4654 8.0001 ILAMA_1551235 6.0071 7.9482 ILAMA_1551235 7.37966 6.6471			17.2713	17.3791	17,4745	16.9428	16.6548	17.0084
BANU_16551229 9.1273 0.9327 BANU_16551230 7.2285 7.9633 BANU_16551232 0.4654 0.0000 BANU_16551235 0.0071 7.9482 BANU_16551236 7.0796 0.0471			13.4356	12.9675	13.8544	13.6454	12.6013	13.4689
ILMN_16551230 7.7285 7.9633 ILMN_16551232 8.4654 6.0008 ILMN_16551235 8.0071 7.9482 ILMN_16551236 7.8796 8.0471			7.71.38	7.9862	7.9643	7.755	8.0183	7.8802
BAWL_1651232 B.4654 8.0008 BAWL_1651235 8.0071 7.9482 BAWL_1651236 7.8796 8.0471	8.0504 1	8.3649 8	8.1343	8.0021	8.0655	8.0698	7.9077	8.3903
RMN_1651236 7.8796 8.0471	7.8086	7.8273 8	8.0388	7.9582	7.924	7.9223	7.8709	7.8023
	8.1136	8.0504 8	1.2541	8.0857	8.1326	8.0164	7.9678	8.01
		16.2961 1	16.5757	15.9428	16.3509	16.3837	16.0422	16.9059
			8.7681	8.4497	8.6845	8.7344	8.2284	8.9006
			7.9958	7.8778	7.895	7.8873	8.2124	7.6747
			1.2756	8.0175	8.1609	7.9941	8.0759	8.2617
			7.9701	7.9466	7.768	7.7873	7.9479	8.2099
			8.0651	8.0785	8.0404	8.0658	7.9551	8.0.26
			1.0932	8.1495	7.8882	8.6854	7.9059	8.1676
			7.7397	7,8908	7.7277	7,6375	7,874	7.7578
			7.7486	7.8487	7.9133 7.8638	7.7216 7.9623	7.8608	7.8538
			11.324	11.0141	11.3506	11,7978	10.4145	12.0773
								6

This works particularly well because it will automatically import the phenotype data.

Sample Type:	Intensity	-	
Experiment Name:	-		
-			
Description:	simple RNA SE	Q - normalized counts	
Add/Remove Annotation:	Add	Rename Remove	
Annotations:	Sample	phenotype	
	PB-6	Class 1	
	PB-8	Class 1	
	PB-2	Class 1	
	PB-4	Class 1	L
	PB-5	Class 2	
	P8-7	PB-7	

Import Experime	ent							×
		Step 9	of 11. Mappi	ng				
	Type of Ider	ntifiers: Micro	array ID	-	•			
	Chip Manufa	cturer: Illumi	na	-	•			
	Chip I	Name: Illumi	naMammal.tx	t 🔹	•			
Probeset	to Gene Map	Limit 1	•					
ID_REF	GSM827665	GSM827666	GSM827667	GSM827668	GSM827669	GSM827670	GSM827	
ILMN_1343291	17.1675	17.1925	16.8778	16.6716	16.4631	17.2019	17.1884	
ILMN_1343295	13.2586	13.6122	11.9146	12.423	11.8728	13.5163	13.655	
ILMN_1651199	7.9112	7.8667	7.9547	7.9057	7.9558	7.9515	7.9634	=
ILMN_1651209	8.1231	8.1487	7.8337	8.0147	7.9728	7.9888	8.1232	-
ILMN_1651210	7.7213	7.9313	7.9778	7.9647	7.9177	7.8818	7.7634	

Just make sure to specify the correct identifier type (Hint: Affymetrix and Illumina are among the most popular.).

Appendix 1.B

Data Import from a Tab Delimited File

Example 1:

Class 1 = CC - 6,8,2,4 Class 2 = CC -1,4,5,7

Gene identifier = Entrez GenelD.

EntrezID	CC-6	CC-8	CC-2	CC-4	CC-5	CC-7	CC-1	CC-3
497097	31.75776	34.09936	25.46663	30.25447	26.30409	18.32842	25.24533	17.16282
100503874	5.60431	11.36645	15.67178	9.454523	1.878864	1.832842	5.049066	0
100038431	0	0	0	0	0	1.832842	0	0
19888	0	0	0	0	0	1.832842	0	0
20671	1.868103	3.788818	3.917944	9.454523	3.757727	3.665685	5.049066	1.716282
27395	44.83448	30.31055	41.13841	35.92719	35.69841	38.48969	31.97742	44.62334
18777	50.43879	45.46582	45.05635	49.16352	26.30409	40.32253	28.61137	36.04193
100503730	1.868103	0	1.958972	0	0	1.832842	0	0
21399	99.00948	77.67077	105.7845	54.83624	67.63909	111.8034	119.4946	97.8281
58175	3.736207	7.577636	1.958972	5.672714	3.757727	9.164212	8.41511	5.148847
108664	160.6569	168.6024	178.2664	151.2724	114.6107	159.4573	186.8154	157.898
18387	0	0	0	0	0	1.832842	0	0
12421	226.0405	212.1738	248.7894	206.1086	191.6441	214.4426	255.8193	293.4843
240690	192.4146	215.9626	188.0613	240.1449	217.9482	201.6127	203.6457	207.6702
319263	246.5896	234.9067	276.215	264.7267	223.5848	285.9234	316.4081	305.4983
71096	18.68103	9.472046	21.54869	7.563619	7.515455	20.16127	13.46418	22.31167
59014	11.20862	17.04968	3.917944	11.34543	15.03091	12.8299	11.78115	5.148847
76187	9.340517	5.683227	9.79486	5.672714	1.878864	7.33137	6.732088	1.716282
72481	0	0	1.958972	0	0	3.665685	0	1.716282
76982	13.07672	17.04968	11.75383	7.563619	3.757727	10.99705	11.78115	17.16282
17864	7.472413	11.36645	17.63075	18.90905	18.78864	14.66274	21.87929	25.74424
70675	69.11982	75.77636	60.72813	62.39985	41.335	62.31664	70.68692	53.20476
170755	20.54914	17.04968	9.79486	17.01814	13.15205	25.65979	13.46418	18.87911
620986	1.868103	1.894409	0	1.890905	1.878864	0	0	0
240697	1.868103	3.788818	0	1.890905	5.636591	3.665685	1.683022	6.86513
73824	1.868103	7.577636	9.79486	9.454523	5.636591	14.66274	18.51324	15.44654
266793	0	1.894409	0	0	0	0	0	0
100038398	0	1.894409	0	0	0	0	0	0
69312	0	0	0	0	0	1.832842	0	0

Find data at: <u>PS tab delimited data set for import – example1_10-06-16.txt</u>

Locate the data in your files.

Import Experiment		×
	Step 1. File Upload.	
Experiment Type:	RNA-Seq 👻	
File Format	Tab-delimited format, including GDS and GSE mat	rix (can be
	compressed as .gz)	
(Excel files (XLS/XLSX)	
File:	normlizedCounts.txt	Browse
Folder to save:	🎉 Biomarin demo	
	Elsevier in the Classroom	
	Biomarker workflow	
	🎉 Pre-eclampsia Data Analysis	
	Pre-eclampsia Workflow	
	🗼 RNA Data Analysis	E
	Le Toxicology Workflow	
	🙀 Variant Analysis I	
	JP Consult 07-26-16 Lit Metrics 07-26-16	
	NGS I	-
	10751	
		Death No. 4
		« Back Next »

Manually input the phenotype class names.

	Step 7 of 11. E	xperiment properties	
Sample Type:	Intensity	-	
Experiment Name:	RNA Seq_1		
Description:	simple RNA S	EQ - normalized counts	
Add/Remove Annotation:	Add	Rename Remove	
Annotations:	Sample	phenotype	
	PB-6	Class 1	
	PB-8	Class 1	
	PB-2	Class 1	=
	P8-4	Class 1	
	P8-5	Class 2	
	P8-7	P8-7	-
	Use Ctrl+C/V t	to copy/paste tabular data after sel	ected cell.

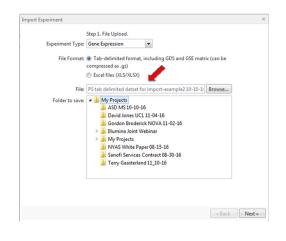
Hint: Copy and Paste (using Ctrl C and Ctrl V) the sample and phenotype columns into Excel. Rename as needed and then copy and paste back into Pathway Studio (this is especially helpful for large data sets).

Locate the data in your files.

mport Expe	eriment				×			
Prot	Type of Ident beset to Gene Map L	Step 9 of 11. 1 ifiers: Entrez Genel limit: 1		•				
EntrealD	P8-6	PB-8	P8-2	P8-4	P8-5			
497097	31.75775622013	34.09936424330	25.46663476886	30.25447484565	26.30409110217			
100503874	5.604309921200	11.36645474776	15.671775242378	9.454523389267	1.878863650155			
100038431 19888	0	0	0	mport Experiment				3
20671	1.8681033070667	3.788818249255	3.917943810594		Step 10 of 11	Find Differently Express	sed Genes	
27395 18777	44.83447936960	30.31054599404 45.46581.899106		Step 1. Choose g	roup of classes 1:	Step 2. Cho	ase group of c	lasses 2:
	1.8681033070667	0	45.0505556216:	Class 1		Class 1		
1399	99.00947527453	77.67077410974		Class 2		Class 2		
58175	3.7362066141334	7.577636498511		P8-7		P8-7		
108664	160.6568844077	168.6024120918	178.2664433820	P8-1		P8-1		
18387	0	0	0	P8-3		P8-3		
12421	226.0405001550	212.1738219583	248.7894319727					
240690	19241464062787	215 9626402075	188.0413029085	Step 3. Add/Re	move Differential Expres	sion: Add		Remove
				Name	Classes 1		Classes 2	
				Class 2 vs Class 1	Class 2		Class 1	
					Multiple Testing Correc	tion: Benjamini-Hochb	erg (FDR)	• Back Next •

Now....analyze your data!

Name	severe vs nor	severe vs nor	normal	normal	normal	normal	normal	normal	normal	normal	normal	normal
Class: phenotype			normal	normal	normal	normal	normal	normal	normal	normal	normal	normal
NPNT	0,44512722		3.1023417	3.2248094	3.4157043	3.4132965	3.2288673	3.2977858	3.5062757	3,3817364	3.4121995	3.663438
NNAT	0.4434109		3.94647	3.7396255	3.7091837	3.8382297	2.8080842	3.02899	2.896066	2.879545	3.7436192	3.182649
MENI	0.43979645		2.8039706	3.0472481	3.1526365	3.051536	2.5830835	2.9087822	3.3052046	2.425587	3.24212	2.8756473
100F3	0.438658	2.840048-6	3,762888	3.4926126	3.9036512	3.9299152	3.7885773	3.1648135	4.0265975	2,7880785	3.955141	3.2503114
ATF68	0.43605977	3.62654E-8	2.7417245	3.0361044	3.0630639	3.080202	3.0309026	3.0967891	3.0393126	2.8522089	3.2675545	3.273574
LGALS38P	0.43538126	6.794238-3	3.56586	3.3496656	2.9184978	3.5116282	3.2662728	3.2495165	3.0724404	2,4045794	3.827332	2.8888872
SEMA4C	0.43186125	6.68509E-4	3.205084	3.677985	3.3027854	3.3150425	3.199761	3.627414	3.2747967	3.3533008	3.805819	3.560887
VAC14	0.43111405	7.729198-9	3.5915947	3.578748	3.9280822	3.4150836	3.5605903	3.5151637	3.979594	3.4852612	3.668806	3.4087784
HPR	0.42935127	1.21907E-1	3.045831	2.2256935	2.395231	2,4069066	3.351131	2.1864138	3.522206	2.1728206	4.5731807	2.4726877
SASHQ	0.427992	5.900678-9	4.20583	4.0956306	4.5675154	4,2402606	4.1202435	4.0592337	4,262593	4.2237034	4.3462715	4169664
SNOT	0.42405158	3.754558-5	3.6913161	3.3952465	3.7796097	3.63177	3,752142	3.1443086	3.9035616	2.8604374	3.6331463	3.108185
RAMP2	0.42302758	1.872995-8	3.325719	3.4652357	3.7653215	3.3269112	3.228077	3.2947803	3.4993057	3.2729661	3.196245	3.2663696
ATP2C2	0.42057437	1.771928-2	2.8010795	2,744746	3.7236018	2.538482	2.2619271	2.8515556	2.8995543	2.81821	2.676007	2,4337893
RABOC	0.41815206	2.974906-9	4.205555	4.088993	4.029197	4.2538853	4,2211018	4.1229553	3.9328039	3.9752455	4,270508	3.9545894
NDRG1	0.41804597	5.082738-6	4,532816	4.4485598	4,716788	4.527291	4.6199884	4,575177	4.846511	4,7090926	4,890311	4.6042852
0102	0.4113841	4.67621E-3	2.2479587	2.275237	3.4495435	2.8442185	2.364523	2.240374	3.6421201	2.6657708	3.5851734	3.1876554
856223	0.4094393	6.249778-7	3.0602665	3.0150592	3.103786	3.0212862	3.1595623	2.887903	3.414946	2.8697982	3,3044136	2.8712993
PCDH9	0.4072031	8.67591E-6	2.3681765	2.3169403	2.9085515	2.4830472	2.5694616	2.3738809	2.6257799	2.530225	2.5228608	2.1531143
CHAMP1	0.40412384	9.802635-7	2.525023	2.8865418	2.882574	2,779484	2.5049832	2.5750718	2.3883617	2,4096093	2.7831118	2.7339106
NCSTN	0.40247694	3.212638-4	3.8231494	3.5233462	3,8775458	3.8757944	1,5599906	3,2129092	3.9290133	2.8738153	3.9979572	3.4276645
SERPINE12	0.4004674	6.925288-6	2.0277224	1.9598136	2.5573647	2,4067023	2,4884322	2.1490352	1.9729681	2.197411	2.189994	2.4816809
1000	0.39685297	6.701665-6	3.845428	4.0931153	4.0667653	4,16335	3.9130797	4.1353474	4,449077	4,209281	4,3756123	4,3653092
PPL	0.39583334	3.005945-6	3.7763228	3.1676502	3,658959	3.7548141	3.6714747	3.6345136	3.9269984	3.8753314	3,701276	3.6690228
	0.39442956	6.736506-3	4.307776	4.3421702	3.8368993	4.527533	4.1752667	4.083473	3.9730859	3.7941718	4,69043	4.3429413
GANA8	0.38919744	5.080895-4	3.7028787	3.6882641	3.5768552	3.8106465	3.6705265	3.324372	3.7897	3.0963032	4,003115	3.3544827
TMEM259	0.3852087	8.353796-3	3.5160267	3.4770021	2,890359	3.6549742	3.4897892	3.088209	2.4315348	2.8254333	3.8352861	3.3689387
PAPPA2	0.3827947		4,531005	4,196888	4,2523823	4.6607437	3.9295466	4,1562643	4.4441304	4.579367	\$1233563	4,507966
	0.3822635		2,7992003	2.9563448	2.9094036	3.1481493	2.6851356	2.880557	2.9010742	2,8608875	3.0602956	3.1308289
GHRH	0.3814309		2.3500373	2.3034785	2.3369036	2.617124	2.384706	2.123421	2.8524778	2.9538636	3.088163	2.2893286
1401	0.37970942		5.457439	4,8424287	4,970541	5.275746	5.042611	5.2269015	5.553094	5.326305	5,7031035	5,2954593
PHEA	0.3783663		4.1284914	3.9507637	3.9751253	4.2137203	3.914293	3.9906478	4.0558968	3.9919643	4,4220815	4,2916403
RDH13	0.37801388		2.9071834	3.0742755	3.0956736	2,8719835	2.5858452	3.2159784	3.1819751	3.0025294	3.1235828	3,2896454
PDUM4	0.3777332		2.6318958	2.5715091	2,6206493	2.8370788	2.721925	2.4106956	3.1601775	2.8671596	2.8938477	2.702548
PNKD	0.3770212		2.4133556	2.6447651	1,879722	2.3850427	2.3488076	1.9695628	2,2308621	1.9859121	2.2856557	2,3963761
DNM1	037568176		3.125448	1.8097585	2.387091	2,764363	1,9920123	2.2451837	2.3223517	2.5421264	2.4619868	2.5601742
UPK18	0.37520668		4.004339	3,7591746	3.946518	4,3778987	4,2300262	3.2951097	4,336649	2,900568	4.389502	3.5136795
ESAM	0.3740341		2,9919853	2.5668955	3.3349354	3.1899774	3.2947004	2,4375637	2,7626069	2,7993405	4.351434	3.1321595
FN1	0.37072456		4333653	4.027715	4.305855	4.412565	4,29007	3.5923715	4152974	3,2706826	4375122	3.7366335
643	0.3/0/2456		4.3339053 3.2380335	3.8163095	4.303633	9.912305 3.6770146	3.6458337	33923715	9.1529/9 3.0605497	3.4203427	4.375122	3.7300335 3.1126177
ALAS2	0.36680964											
PVRL4		1.041518-4	3.7377234	3.6784022	3.8382297	3.8872035	3,7340598	3.9059728	3.8967748	3.8164146	4.116758	3.9129548
MEADS	0.3639202	5.74698E+7	4.861392	4.5101643	4,866012	4.814591	4.6510644	4.524466	4.7575245	4,4971886	5.0340214	4.6889114


Example 2. Import Fold Change and P-value Data

A	А	В	С	D	E	F	G	н	. I.	J	K
1	EntrezID	Symbol	ki_vs_wt::adjust_p_value	ki_vs_wt::foldChange	GeneName	Chr	Start	End	RefSeqID	EnsemblID	UNIGENE
2	231130	Tnip2	0.46295	5.1541	TNFAIP3 interact	5	-34496096	-34513979	NM_139064;	ENSMUSGOOD	Mm.28615
3	330222	Sdk1	0.46864	4.6492	sidekick homolog	5	141241534	142213791	NM_177879;	ENSMUSGOOD	Mm.151931;
4	50787	Hs6st3	0.46864	4.1528	heparan sulfate 6	14	119138265	119869815	NM_015820;	ENSMUSGOOD	Mm.445777
5	21405	Hnf1a	0.46864	4.1521	HNF1 homeobox	5	-114948980	-114971062	NM_009327;	ENSMUSGOOD	Mm.332607
6	66589	Ube2v1	0.31656	2.9121	ubiquitin-conjuga	2	-167607639	-167632005	NM_023230;	ENSMUSGOOD	Mm.278783;
7	19791	Rn18s	0.21073	2.3094	18S ribosomal RM	6	NA	NA	NR_003278	NA	NA
8	102436	Lars2	0.23964	1.9412	leucyl-tRNA syntl	9	123366940	123462664	NM_153168;	ENSMUSGOOD	Mm.276076
9	72003	Synpr	0.20006	1.8036	synaptoporin	14	13284780;1345	13615469;1361	NM_0011630	ENSMUSGOOD	Mm.317515
10	17263	Meg3	0.20006	1.4666	maternally expre	12	109545398;109	109568600;109	NM_144513;N	ENSMUSGOOD	Mm.289645;
11	100861531	Rn45s	0.20006	1.3918	45S pre-ribosoma	17	39842997	39848829	NR_046233	NA	NA
12	16438	ltpr1	0.20006	-1.2386	inositol 1,4,5-tris	6	108213096	108551116	NM_010585;	ENSMUSG000	Mm.227912
13	12307	Calb1	0.23948	-1.3468	calbindin 1	4	15881264	15906709	NM_009788;	ENSMUSGOOD	Mm.277665
14	57295	Icmt	0.25878	-1.429	isoprenylcysteine	4	152297214	152307126	NM_133788;	ENSMUSGOOD	Mm.277464
15	22629	Ywhah	0.46864	-1.4367	tyrosine 3-monod	5	33018816	33027966	NM_011738;	ENSMUSGOOD	Mm.332314
16	11676	Aldoc	0.16688	-1.4774	aldolase C, fructo	11	78324198	78326760	NM_0013034	ENSMUSGOOD	Mm.7729
17	56298	Atl2	0.46864	-1.4953	atlastin GTPase 2	17	-79848392;-798	-79896028;-798	NM_0012866	ENSMUSGOOD	Mm.175403
18	20623	Snrk	0.20006	-1.5039	SNF related kinas	9	122117266	122169702	NM_0011645	ENSMUSGOOD	Mm.257989
19	242202	Pde5a	0.23964	-1.5084	phosphodiestera	3	122729158	122859374	NM_153422;	ENSMUSG000	Mm.134911
20	67792	Rgs8	0.094407	-1.512	regulator of G-pr	1	153653037	153697665	NM_026380;	ENSMUSG000	Mm.379143
21	104175	Sbk1	0.20006	-1.5168	SH3-binding kina	7	126272619	126294999	NM_145587;	ENSMUSG000	Mm.29660
22	20513	Slc1a6	0.46295	-1.5268	solute carrier far	10	78780496	78814825	NM_009200;	ENSMUSG000	Mm.6257
23	18546	Pcp4	0.20006	-1.5802	Purkinje cell prot	16	96467606	96525793	NM_008791;	ENSMUSG000	Mm.5023
24	239217	Kctd12	0.20006	-1.6075	potassium chann	14	-102976581	-102982637	NM_177715;	ENSMUSG000	Mm.246466
25	66540	Fam107b	0.20006	-1.75	family with seque	2	3713458	3782134	NM_025626;	ENSMUSG000	Mm.277864
26	98758	Hnrnpf	0.46295	-1.7649	heterogeneous n	6	117906782;117	117925622;117	NM_0011664	ENSMUSGOOD	Mm.422979;
27	110834	Chrna3	0.46864	-4.1142	cholinergic recep	9	-55011343	-55026559	NM_145129;	ENSMUSGOOD	Mm.63569
28	30937	Lmcd1	0.23964	-4.8776	LIM and cysteine	6	112273758	112330423	NM 144799;	ENSMUSG000	Mm.234441

Find data at:

PS tab delimited data set for import - example2_10-10-16.txt

Locate the data in your files.

Indicate data location; fold change and p-value.

Gene identifier = Entrez GenelD

	Step	5 of 11. Select first samp	le column.			
		# of columns per Sample				
Expression	n Value col	umn position (in Sample)	2			
	\checkmark	p-value column position	1			
		Call column position	0			
EntrezID	Symbol	ki_vs_wt:adjust_p_value	ki_vs_wt:foldChange	GeneName	Chr	4
67792	Rgs8	0.094407	-1.512	regulator of G-protein signa	1	1
20513	SIcla6	0.46295	-1.5268	solute carrier family 1 (high	10	5
11676	Aldoc	0.16688	-1.4774	aldolase C, fructose-bispho	11	7
17263	Meg3	0.20006	1.4666	maternally expressed 3	12	1
72003	Synpr	0.20006	1.8036	synaptoporin	14	1
239217	Kctd12	0.20006	-1.6075	potassium channel tetrame	14	
50787	Hs6st3	0.46864	4.1528	heparan sulfate 6-O-sulfotr	14	1
18546	Pcp4	0.20006	-1.5802	Purkinje cell protein 4	16	ŝ
100861531	Rn45s	0.20006	1.3918	45S pre-ribosomal RNA	17	3
56298	Atl2	0.46864	-1.4953	atlastin GTPase 2	17	
66540	Fam107b	0.20006	-1.75	family with sequence simila	2	3
4		11			h	

Limit data to these two columns (i.e. p-value and fold change).

EntrezID	Symbol	ki_vs_wt:adjust_p_value	ki_vs_wt:foldChange	GeneName	Chr	-
67792	Rgs8	0.094407	-1.512	regulator of G-protein signa	1	1
20513	Sicla6	0.46295	-1.5268	solute carrier family 1 (high	10	7
11676	Aldoc	0.16688	-1.4774	aldolase C, fructose-bispho	11	7
17263	Meg3	0.20006	1.4666	maternally expressed 3	12	1
72003	Synpr	0.20006	1.8036	synaptoporin	14	1
239217	Kctd12	0.20006	-1.6075	potassium channel tetrame	14	-
50787	Hs6st3	0.46864	4.1528	heparan sulfate 6-O-sulfotr	14	1
18546	Pcp4	0.20006	-1.5802	Purkinje cell protein 4	16	5
100861531	Rn45s	0.20006	1.3918	45S pre-ribosomal RNA	17	з
56298	Atl2	0.46864	-1.4953	atlastin GTPase 2	17	-
66540	Fam107b	0.20006	-1.75	family with sequence simila	2	з
66589	Ube2v1	0.31656	2.9121	ubiquitin-conjugating enzy	2	-
242202	Pde5a	0.23964	-1.5084	phosphodiesterase 5A, cG	3	1
12307	Calb1	0.23948	-1.3468	calbindin 1	4	1
57295	Icmt	0.25878	-1.429	isoprenylcysteine carboxyl	4	1
22629	Ywhah	0.46864	-1.4367	tyrosine 3-monooxygenase	5	3

Note: in this example, for simplicity's sake we only have one comparison. In fact, this method could be adopted for any number of different, separate comparisons. Simply adjust the # of columns highlighted (all have to be in the same p-value, fold change order and also have to be grouped together (see below).

	EntrezID	Symbol	p_value_1	foldChange_1	p_value_2	foldChange_2	p_value_3	foldChange_3
-	231130	Tnip2	0.46295	5.1541	0.46295	5.1541	0.46295	5.1541
	330222	Sdk1	0.46864	4.6492	0.46864	4.6492	0.46864	4.6492
	50787	Hs6st3	0.46864	4.1528	0.46864	4.1528	0.46864	4.1528
	21405	Hnf1a	0.46864	4.1521	0.46864	4.1521	0.46864	4.1521

Indicate data type.

Experiment		×		Fold change data	×	
	Step 7 of 11. Experiment properties			_	Filter + Select	• The Edit •
Sample Type:	Signed fold-change		6		hered	
Experiment Name:	Fold change data		E	Name	ki_vs_wt:adjus	ki_vs_wt:adjus.
		N		Class: phenotype	ki_vs_wt:adjust_p	
Description:			10		5.1541	4.62950
				SDK1	4.6492	4.6864
				HS6ST3	4.1528	4.6864
lemove Annotation:	Add Rename Remove			HNF1A	4.1521	4.6864
				UBE2V1	2.9121	3.1656
Annotations:	Sample phenotype		1	m_Rn18s	2.3094	2.1073
	ki_vs_wt:adjust ki_vs_wt:adjust			LARS2	1.9412	2.3964
				SYNPR	1.8036	2.0006
				m_Meg3	1.4666	2.0006
				m_Rn45s	1.3918	2.0006
	$\gamma = 1 2$			ITPR1	-1.2386	2.0006
				CALB1	-1.3468	2.3948
	$\gamma \gamma $			ICMT	-1.429	2.5878
	$\gamma \gamma $			YWHAH	-1.4367	4.6864
				ALDOC	-1.4774	1.6688
	222			ATL2	-1.4953	4.6864
				SNRK	-1.5039	2.0006
				PDESA	-1.5084	2.3964
1000				RGS8	-1.512	9.4407
				SBK1	-1.5168	2.0006
				SLC1A6	-1.5268	4.6295
1000				PCP4	-1.5802	2.0006
				KCTD12	-1.6075	2.0006
			1	FAM107B	-1.75	2.0006
				HNRNPF	-1.7649	4.6295
N	owanalyze your data!			CHRNA3	-4.1142	4.6864
			-	LMCD1	-4,8776	2.3964

Appendix 1.c

Data Import for RNASeq Data

Complex RNASeq data (from the CuffLinks program)

Find data at:

LungNormal_vs_LungTumor.gene_exp.diff_10-10-16.txt

4	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0
1	gene	locus	sample_1	sample_2	status	value_1	value_2	FC_T/N	log2(fold_change)	test_stat	p_value	FC_T/N	log2(fold_change)	q_value	significan
2	42430	chr4:16444	LungNorm	LungTumor	ОК	0.888877	1.63541	1.839860858	0.879596665	3.10178	0.00015	1.839860858	0.879596665	0.000336887	yes
3	42430	chr1:2209	LungNorm	LungTumor	OK	18.2479	7.90096	0.432979137	-1.207630583	-5.79906	0.00005	0.432979137	-1.207630583	0.00011798	yes
4	42431	chr1:22093	LungNorm	LungTumor	ОК	4.59102	9.55956	2.082230093	1.0581295	4.40671	0.00005	2.082230093	1.0581295	0.00011798	yes
5	42431	chr19:847	LungNorm	LungTumor	OK	4.61475	8.07907	1.750705889	0.807936737	2.8992	0.00005	1.750705889	0.807936737	0.00011798	yes
6	42432	chr5:1262	LungNorm	LungTumor	ОК	0.962022	0.407359	0.42344042	-1.239769104	-3.10235	0.0001	0.42344042	-1.239769104	0.000228857	yes
7	42433	chr2:2171	LungNorm	LungTumor	NOTEST	0.0110425	0.0189432	1.715481096	0.778613228	0	1	1.715481096	0.778613228	1	no
8	42434	chr10:940	LungNorm	LungTumor	ОК	8.41669	3.9645	0.471028397	-1.086114056	-4.99175	0.00005	0.471028397	-1.086114056	0.00011798	yes
9	42435	chr5:1035	LungNorm	LungTumor	ОК	47.5576	32.7109	0.687816458	-0.539904457	-2.82576	0.00005	0.687816458	-0.539904457	0.00011798	yes
10	42436	chr2:1605	LungNorm	LungTumor	OK	40.1367	21.811	0.543417869	-0.879866088	-4.64003	0.00005	0.543417869	-0.879866088	0.00011798	yes
11	42437	chr10:459	LungNorm	LungTumor	ОК	8.24987	10.7157	1.298893195	0.377282806	1.62279	0.0205	1.298893195	0.377282806	0.0323616	yes
12	42438	chr12:5814	LungNorm	LungTumor	ок	0.946702	0.561338	0.592940545	-0.754040644	-1.81427	0.0172	0.592940545	-0.754040644	0.0275972	yes
13	42439	chr17:607	LungNorm	LungTumor	OK	0.536472	0.652436	1.216160396	0.282333514	0.187988	0.8053	1.216160396	0.282333514	0.836655	no
14	42614	chr16:303	LungNorm	LungTumor	ОК	1.46039	2.53332	1.73468731	0.79467563	2.00533	0.01285	1.73468731	0.79467563	0.0211307	yes
15	42615	chr2:2421	LungNorm	LungTumor	ок	37.9996	61.7796	1.625796061	0.701146298	1.85005	0.009	1.625796061	0.701146298	0.015243	yes
16	42616	chr22:423	LungNorm	LungTumor	ОК	1.04544	1.09603	1.048391108	0.068177023	0.176019	0.80155	1.048391108	0.068177023	0.833478	no
17	42617	chr17:565	LungNorm	LungTumor	ОК	3.06323	15.6396	5.105591157	2.352078015	8.52392	0.00005	5.105591157	2.352078015	0.00011798	yes
18	42618	chr22:197	LungNorm	LungTumor	ОК	12.3691	3.63608	0.293964799	-1.766284684	-5.7979	0.00005	0.293964799	-1.766284684	0.00011798	yes
19	42619	chrX:1187	LungNorm	LungTumor	ОК	2.84457	5.64163	1.983298003	0.987901468	3.76105	0.00005	1.983298003	0.987901468	0.00011798	yes
20	42620	chr7:35840	LungNorm	LungTumor	ОК	46.1913	56.5115	1.223423026	0.290923334	1.50383	0.0314	1.223423026	0.290923334	0.0477865	yes
21	42621	chr5:1320	LungNorm	LungTumor	ок	4.00653	4.6348	1.156811505	0.210153806	0.84747	0.2275	1.156811505	0.210153806	0.281308	no
22	42622	chr17:752	LungNorm	LungTumor	ОК	106.781	110.778	1.037431753	0.053016432	0.278004	0.68845	1.037431753	0.053016432	0.73395	no
23	42623	chr2:1103	LungNorm	LungTumor	ОК	57.1868	36.4956	0.638182238	-0.647959639	-3.31384	0.00005	0.638182238	-0.647959639	0.00011798	yes
24	42624	chr4:7787	LungNorm	LungTumor	ок	15.9228	26.6012	1.670635818	0.740397274	3.86171	0.00005	1.670635818	0.740397274	0.00011798	yes
25	42627	chr7:5586	LungNorm	LungTumor	NOTEST	0.0527852	0.0305913	0.57954313	-0.787012065	0	1	0.57954313	-0.787012065	1	no
26	42628	chr1:8732	LungNorm	LungTumor	ОК	17.5671	19.1205	1.088426661	0.122244201	0.573455	0.4174	1.088426661	0.122244201	0.476824	no
27	A1BG	chr19:588	LungNorm	LungTumor	ОК	0.274634	0.480508	1.749630417	0.807050207	1.04905	0.1744	1.749630417	0.807050207	0.222972	no
28	A1BG-AS1	chr19:588	LungNorm	LungTumor	ОК	0.120942	0.333523	2.757710307	1.463470912	1.41657	0.1016	2.757710307	1.463470912	0.137601	no
29	A2M	chr12:921	LungNorm	LungTumor	ОК	53.9448	1066.04	19.76168231	4.304633864	22.4442	0.00005	19.76168231	4.304633864	0.00011798	yes
30	A2M-AS1	chr12:921	LungNorm	LungTumor	OK	0.27323	0.482627	1.766376313	0.820792731	0.0886351	0.654	1.766376313	0.820792731	0.702531	no
31				LungTumor		9.77056	0.0549773	0.005626832	-7.473461386	-9.22745	0.00005	0.005626832	-7.473461386	0.00011798	yes
32				LungTumor		18.9259	5.0193	0.265207995	-1.914803825	-8.70986	0.00005	0.265207995	-1.914803825		

Step 1. Identify columns to be imported, in this case, log2 fold change and q-

value. Hint: you may need to change the original position of the fold change and p-value columns so that they are located side-by-side in the final spreadsheet import.

The CuffDiff output provides a significance call for each calculated estimate of differential expression (see last column above).

It is strongly recommended that the user pre-filter their data to include only significant calls. This will eliminate, among other things, high fold changes measured at or below background levels on both sides. This will NOT be evident after the data has been imported into Pathway Studio and could seriously (and silently) impact the resulting analysis. The data below reflects this prefiltering step.

A	В	С	D	E	F	G	н	1	J	к	L	M	N	0
1 gene	locus	sample_1	sample_	2 status	value_1	value_2	FC_T/N	log2(fold_	test_stat	p_value	FC_T/N	log2(fold_	q_value	significant
2 4243	0 chr4:1644	LungNorn	LungTun	nc OK	0.888877	1.63541	1.839861	0.879597	3.10178	0.00015	1.839861	0.879597	0.000337	yes
4243	0 chr1:2209	LungNorn	LungTun	nc OK	18.2479	7.90096	0.432979	-1.20763	-5.79906	0.00005	0.432979	-1.20763	0.000118	yes
4 4243	1 chr1:2209	LungNorn	LungTur	nc OK	4.59102	9.55956	2.08223	1.05813	4.40671	0.00005	2.08223	1.05813	0.000118	yes
5 4243	1 chr19:847	LungNorn	LungTur	nc OK	4.61475	8.07907	1.750706	0.807937	2.8992	0.00005	1.750706	0.807937	0.000118	yes
5 4243	2 chr5:1262	LungNorn	LungTun	nc OK	0.962022	0.407359	0.42344	-1.23977	-3.10235	0.0001	0.42344	-1.23977	0.000229	yes
7 4243	4 chr10:940	LungNorn	LungTun	nc OK	8.41669	3.9645	0.471028	-1.08611	-4.99175	0.00005	0.471028	-1.08611	0.000118	yes
8 4243	5 chr5:1035	LungNorn	LungTun	nc OK	47.5576	32.7109	0.687816	-0.5399	-2.82576	0.00005	0.687816	-0.5399	0.000118	yes
9 4243	6 chr2:1605	LungNorn	LungTur	nc OK	40.1367	21.811	0.543418	-0.87987	-4.64003	0.00005	0.543418	-0.87987	0.000118	yes
.0 4243	7 chr10:459	LungNorn	LungTur	nc OK	8.24987	10.7157	1.298893	0.377283	1.62279	0.0205	1.298893	0.377283	0.032362	yes
4243	8 chr12:581	LungNorn	LungTur	nc OK	0.946702	0.561338	0.592941	-0.75404	-1.81427	0.0172	0.592941	-0.75404	0.027597	yes
2 4261	4 chr16:303	LungNorn	LungTur	nc OK	1.46039	2.53332	1.734687	0.794676	2.00533	0.01285	1.734687	0.794676	0.021131	yes
.3 4261	5 chr2:2421	LungNorn	LungTur	nc OK	37.9996	61.7796	1.625796	0.701146	1.85005	0.009	1.625796	0.701146	0.015243	yes
4 4261	7 chr17:565	LungNorn	LungTur	nc OK	3.06323	15.6396	5.105591	2.352078	8.52392	0.00005	5.105591	2.352078	0.000118	yes
.5 4261	8 chr22:197	LungNorn	LungTur	nc OK	12.3691	3.63608	0.293965	-1.76628	-5.7979	0.00005	0.293965	-1.76628	0.000118	yes
.6 4261	9 chrX:1187	LungNorn	LungTur	nc OK	2.84457	5.64163	1.983298	0.987901	3.76105	0.00005	1.983298	0.987901	0.000118	yes
7 4262	0 chr7:3584	LungNorn	LungTur	nc OK	46.1913	56.5115	1.223423	0.290923	1.50383	0.0314	1.223423	0.290923	0.047787	yes
.8 4262	3 chr2:1103	LungNorn	LungTur	nc OK	57.1868	36.4956	0.638182	-0.64796	-3.31384	0.00005	0.638182	-0.64796	0.000118	yes
.9 4262	4 chr4:7787	LungNorn	LungTur	nc OK	15.9228	26.6012	1.670636	0.740397	3.86171	0.00005	1.670636	0.740397	0.000118	yes
0 A2M	chr12:921	LungNorn	LungTur	nc OK	53.9448	1066.04	19.76168	4.304634	22.4442	0.00005	19.76168	4.304634	0.000118	yes
A2ML1	chr12:897	LungNorn	LungTur	nc OK	9.77056	0.054977	0.005627	-7.47346	-9.22745	0.00005	0.005627	-7.47346	0.000118	yes
2 A4GALT	chr22:430	LungNorn	LungTur	nc OK	18.9259	5.0193	0.265208	-1.9148	-8.70986	0.00005	0.265208	-1.9148	0.000118	yes
3 A4GNT	chr3:1378	LungNorn	LungTur	nc OK	0.146681	0.598347	4.07924	2.0283	2.40889	0.01205	4.07924	2.0283	0.019945	yes
4 AACS	chr12:125	LungNorn	LungTur	nc OK	5.90326	3.5885	0.607884	-0.71813	-3.13482	0.00005	0.607884	-0.71813	0.000118	yes
5 AADAC	chr3:1513	LungNorn	LungTur	nc OK	0.829139	1.74367	2.102989	1.072441	2.00692	0.00735	2.102989	1.072441	0.012659	yes
6 AADACL	chr3:1513	LungNorn	LungTur	nc OK	2.06816	0.364689	0.176335	-2.50361	-2.55421	0.0222	0.176335	-2.50361	0.034796	yes
7 AADAT	chr4:1709	LungNorn	LungTur	nc OK	9.23837	6.97247	0.754729	-0.40597	-1.73537	0.0139	0.754729	-0.40597	0.02271	yes
8 AAGAB	chr15:674	LungNorn	LungTur	nc OK	12.972	9.93491	0.765873	-0.38482	-1.75333	0.01895	0.765873	-0.38482	0.03013	yes
9 AAMDC	chr11:775	LungNorn	LungTur	nc OK	6.15364	23.9798	3.896848	1.962308	7.90551	0.00005	3.896848	1.962308	0.000118	yes
O AAR2	chr20:348	LungNorn	LungTur	nc OK	9.21531	6.73842	0.73122	-0.45162	-1.96335	0.0045	0.73122	-0.45162	0.008046	yes
1 AARS	chr16:702	LungNorn	LungTun	nc OK	68.7434	39.2857	0.571483	-0.80722	-4.34398	0.00005	0.571483	-0.80722	0.000118	yes
2 AARS2	chr6:4426	LungNorn	LungTur	nc OK	5.13432	1.64905	0.321182	-1.63854	-6.77488	0.00005	0.321182	-1.63854	0.000118	yes
3 AASDH	chr4:5720	LungNorn	LungTun	nc OK	6.86677	9.32449	1.357915	0.441393	2.10929	0.00375	1.357915	0.441393	0.006785	yes

Find data at:

LungNormal_vs_LungTumor.gene_exp.diff2_10-10-16.txt

Import fold change and q-value data the same as in Appendix I.B, Example 2.

mport	Experiment						
	Step 5 of	11. Select	first samp	le column.			
	# of	columns p	er Sample	e 1			
Expre	ssion Value column	position (i	n Sample) 1			
		lue colum					
		Call colum	n positior	0			
N	log2(fold_change)	test_stat	p_value	FC_T/N	log2(fold_change)	q_value	significant
360858	0.879596665	3.10178	0.00015	1.839860858	0.879596665	0.000336887	yes
979137	-1.207630583	-5.79906	0.00005	0.432979137	-1.207630583	0.00011798	yes
230093	1.0581295	4.40671	0.00005	2.082230093	1.0581295	0.00011798	yes
705889	0.807936737	2.8992	0.00005	1.750705889	0.807936737	0.00011798	yes
44042	-1.239769104	-3.10235	0.0001	0.42344042	-1.239769104	0.000228857	yes
028397	-1.086114056	-4.99175	0.00005	0.471028397	-1.086114056	0.00011798	yes
816458	-0.539904457	-2.82576	0.00005	0.687816458	-0.539904457	0.00011798	yes
417869	-0.879866088	-4.64003	0.00005	0.543417869	-0.879866088	0.00011798	yes
893195	0.377282806	1.62279	0.0205	1.298893195	0.377282806	0.0323616	yes
940545	-0.754040644	-1.81427	0.0172	0.592940545	-0.754040644	0.0275972	yes
68731	0.79467563	2.00533	0.01285	1.73468731	0.79467563	0.0211307	yes
796061	0.701146298	1.85005	0.009	1.625796061	0.701146298	0.015243	yes
						« Back	Next »
				ł	,	« Back	Next »
				ł	,	« Back	Next »
mport l	Experiment			ł	,	« Back	Next »
ímport l	Experiment	Step 6 of	11. Select	t last column of	of last sample.	« Back	Next »
ímport l							
N	log2(fold_change)	test_stat	p_value	FC_T/N	log2(fold_change)	q_value	significant
N 860858	log2(fold_change) 0.879596665	test_stat 3.10178	p_value 0.00015	FC_T/N 1.839860858	log2(fold_change) 0.879596665	q_value 0.000336887	significant yes
N	log2(fold_change) 0.879596665 -1.207630583	test_stat 3.10178 -5.79906	p_value 0.00015 0.00005	FC_T/N 1.839860858 0.432979137	log2(fold_change)	q_value 0.000336887 0.00011798	significant yes yes
N 860858 979137	log2(fold_change) 0.879596665	test_stat 3.10178	p_value 0.00015	FC_T/N 1.839860858 0.432979137 2.082230093	log2(fold_change) 0.879596665 -1.207630583 1.0581295	q_value 0.000336887 0.00011798	significant yes yes yes
N 860858 979137 230093	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737	test_stat 3.10178 -5.79906 4.40671 2.8992	p_value 0.00015 0.00005 0.00005 0.00005	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737	q_value 0.000336887 0.0001798 0.00011798	significant yes yes yes yes yes
N 860858 979137 230093 705889 44042	log2(fold_change) 0.879596665 -1.207630583 1.0581295	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235	p_value 0.00015 0.00005 0.00005 0.00005 0.0001	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042	log2(fold_change) 0.879596665 -1.207630583 1.0581295	q_value 0.000336887 0.00011798	significant yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 -4.99175	p_value 0.00015 0.00005 0.00005 0.00005 0.0001 0.00005	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104	q_value 0.000336887 0.0001798 0.00011798 0.00011798 0.00011798	significant yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 -4.99175 -2.82576	p_value 0.00015 0.00005 0.00005 0.00005 0.0001 0.00005 0.00005	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457	q_value 0.000336887 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458 417869	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 -4.99175 -2.82576 -4.64003	p_value 0.00015 0.00005 0.00005 0.00005 0.00005 0.00005	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088	q_value 0.000336887 0.00013798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458 417869 893195	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 4.99175 -2.82576 4.64003 1.62279	 p_value 0.00015 0.00005 0.00005 0.0001 0.0001 0.00005 0.00005 0.00005 0.00005 0.00005 	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869 1.298893195	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806	q_value 0.000336887 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458 417869 893195 940545	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 4.99175 -2.82576 4.64003 1.62279 -1.81427	 value 0.00015 0.00005 0.00005 0.0001 0.0001 0.0001 0.0005 	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869 1.298893195 0.592940545	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.754040644	q_value 0.000336887 0.00013798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458 417869 893195 940545 68731	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.754040644 0.79467563	test_stat 3.10178 -5.79906 4.40671 2.8992 3.10235 4.99175 -2.82576 4.64003 1.62279 -1.81427 2.00533	p_value 0.00015 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.0005 0.01285	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869 1.298893195 0.592940545 1.73468731	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.754040644 0.79467563	q_value 0.000336887 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.0011798 0.00211798	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 230093 705889 44042 028397 816458 417869 893195 940545 68731 796061	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.754040644 0.79467563 0.701146298	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 4.99175 -2.82576 4.64003 1.62279 -1.81427 2.00533 1.85005	p_value 0.00015 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.00172 0.01285 0.009	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869 1.298893195 0.592940545 1.73468731 1.625796061	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.37782806 -0.754040644 0.79467563 0.701146298	 q_value 0.000336887 0.00011798 0.0011798 0.0011798 0.011824 	significant yes yes yes yes yes yes yes yes yes yes
N 860858 979137 7230093 705889 44042 028397 028397 816458 893195 893195 940545 68731 796061 591157	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.754040644 0.79467563	test_stat 3.10178 -5.79906 4.40671 2.8992 -3.10235 4.99175 -2.82576 4.64003 1.62279 -1.81427 2.00533 1.85005 8.52392	p_value 0.00015 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.0005 0.0005 0.01285 0.009 0.00005	FC_T/N 1.839860858 0.432979137 2.082230093 1.750705889 0.42344042 0.471028397 0.687816458 0.543417869 1.298893195 0.592940545 1.73468731 1.625796061 5.105591157	log2(fold_change) 0.879596665 -1.207630583 1.0581295 0.807936737 -1.239769104 -1.086114056 -0.539904457 -0.879866088 0.377282806 -0.37782806 -0.754040644 0.79467563 0.701146298	q_value 0.000336887 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.00011798 0.0011798 0.00211798	significant yes yes yes yes yes yes yes yes yes yes

-5.7979 0.00005 0.293964799 -1.766284684

1.50383 0.0314 1.223423026 0.290923334

-3.31384 0.00005 0.638182238 -0.647959639

298003 0.987901468 3.76105 0.00005 1.983298003 0.987901468

0.00011798 yes

0.00011798 yes

0.0477865 yes

0.00011798 yes

« Back Next »

1

964799 -1.766284684

423026 0.290923334

182238 -0.647959639

۲

	Step 7 of 11. Experiment properties	
Sample Type:	Log-ratio 👻 📕	
Experiment Name:	CuffDiff output	
Description:		
Add/Remove Annotation: Annotations;	Add Rename Remove	
	log2(fold_change) log2(fold_change)	

Indicate data type (in this case, log2 of fold change = Log-ratio).

Indicate probe identity type.

Prob			Name+Alias	*			
	eset to Gen	e Map Limit	1 -				
test_id	gene_id	gene	locus	sample_1	sample_2	status	value_1
A18G	A18G	A18G	chr19:58858171-58874214	LungNormal	LungTumor	OK	0.2746
A18G-AS1	A18G-AS1	A18G-AS1	chr19:58858171-58874214	LungNormal	LungTumor	OK	0.1209
A1CF	A1CF	A1CF	chr10:52559168-52645435	LungNormal	LungTumor	NOTEST	0
A2M	A2M	A2M	chr12:9217772-9268558	LungNormal	LungTumor	OK	53.944
A2M-AS1	A2M-AS1	A2M-AS1	chr12:9217772-9268558	LungNormal	LungTumor	OK	0.2732
A2ML1	A2ML1	A2ML1	chr12:8975149-9029381	LungNormal	LungTumor	OK	9.7705
A2MP1	A2MP1	A2MP1	chr12:9381128-9386803	LungNormal	LungTumor	NOTEST	0
A4GALT	A4GALT	A4GALT	chr22:43088126-43116876	LungNormal	LungTurnor	ОК	18.925
A4GNT	A4GNT	A4GNT	chr3:137842559-137851229	LungNormal	LungTumor	OK	0.14668
AA06	AA06	AA06	chr17:31340105-32483825	LungNormal	LungTumor	NOTEST	0
AAAS	AAAS	AAAS	chr12:53701239-53715412	LungNormal	LungTumor	OK	26.8
AACS	AACS	AACS	chr12:125549924-1256278	LungNormal	LungTumor	OK	5.9032
AACSP1	AACSP1	AACSP1	chr5:178191863-178203277	LungNormal	LungTumor	NOTEST	0.0156
AADAC	AADAC	AADAC	chr3:151347319-151546276	LungNormal	LungTumor	OK	0.8291
AADACL2	AADACL2	AADACL2	chr3:151347319-151546276	LungNormal	LungTumor	OK	2.0681
AADACL3	AADACL3	AADACL3	chr1:12776117-12788726	LungNormal	LungTumor	NOTEST	0
AADACL4	AADACL4	AADACL4	chr1:12704565-12727097	LungNormal	LungTumor	NOTEST	0
AADAT	AADAT	AADAT	chr4:170981372-171011372	LungNormal	LungTumor	ОК	9.2383
AAED1	AAED1	AAED1	chr9:99403532-99417599	LungNormal	LungTumor	OK	12.964

Hint: when the probe identity uses gene symbol (as in this case) it's often best to use the Name+Alias designation as this will capture both current and past gene symbol assignments for the same gene/ protein entity.

Now....analyze your data!

	LungNormal_vs	. ×	
Lir	nk 📗 View 👻 🦷	Filter 🝷 🛄 Select	• 🗈• 🚱 • 🥥
	Name	log2(fold_ch	q_value
	Class: phenotype	log2(fold_chan	q_value
	SFTPC	13.147715	1.1798E-4
	SFTPB	12.085524	1.1798E-4
	SFTPD SFTPA1		1.1798E-4
		12.040313	1.1798E-4
	SFTPA2	10.691367	
	NAPSA	10.454914	7.48607E-4
	PGC	10.358013	0.00703833
	SCGB3A2	9.754293	1.1798E-4
	AQP4	9.564383	0.0169025
	AGTR2	9.491557	0.00152403
	SFTPD	9.351456	0.0140808
	CACNA2D2	8.7339525	1.1798E-4
	CLDN18	8.6818905	0.00199503
	TMEM100	8.601007	0.0154719
	SCN1A	8.503489	1.1798E-4
	HHIP	8.458812	1.1798E-4
	AGBL1	8.294703	0.0198685
	VEPH1	8.231634	1.1798E-4
	AGER	8.11477	1.1798E-4
	CA4	7.9945545	0.00862657
	NKX2-1	7.986033	9.46723E-4
	TRHDE	7.9664173	0.0350243
	SLC6A4	7.7363644	1.1798E-4
	RASGRF1	7.7332873	1.1798E-4
	FCN3	7.617541	1.1798E-4
	WIF1	7.583697	1.1798E-4
	GRIA1	7.403018	1.1798E-4
	FOXA2	7.364509	0.0047396
	NDNF	7.3066463	1.1798E-4
	C16orf89	7.2883987	6.47053E-4
	ANKRD1	7.232523	1.1798E-4
	ADH1B	7.1854696	1.1798E-4
	CRTAC1	7.0702586	0.00152403
	MCEMP1	7.055917	1.1798E-4
	PKHD1L1	7.0241814	1.1798E-4
	COL6A6	6.9559903	1.1798E-4
	TYRPI	6.9388504	2.28857F-4

Pathway Studio Data Model

The type of entities you want to connect in pathway view will define a set of allowed relations; the choice of relation type defines additional parameters such as Mechanism, BiomarkerType, ChangeType, and QuantitativeType.

RNEF	Effect	Mech	Bio	Change	Quantit	ls Direct	Allowed types for Entity	Allowed types for Entity 2
Control						Physical	1	
type		anism	marker	Туре	ative			
					Туре			
		ļ	Туре		ļ			
Direct	positive							Protein, FunctionalClass,
Regulation						Physical	Complex, SmallMol	Complex, SmallMol
Direct	negative					Direct	Protein, FunctionalClass,	Protein, FunctionalClass,
Regulation						Physical	Complex, SmallMol	Complex, SmallMol
Binding						Direct	Protein, FunctionalClass,	Protein, FunctionalClass,
						Physical	Complex, SmallMol	Complex, SmallMol
Biomarker							Protein, FunctionalClass,	CellProcess, Disease,
							Complex, SmallMol	ClinicalParamter
Biomarker			diagnostic				Protein, FunctionalClass,	CellProcess, Disease,
							Complex, SmallMol	ClinicalParamter
Biomarker			prognostic				Protein, FunctionalClass,	CellProcess, Disease,
							Complex, SmallMol	ClinicalParamter
Cell							Protein, FunctionalClass,	CellType
Expression							Complex	
Chem						Direct	Protein, FunctionalClass,	SmallMol
Reaction						Physical	Complex	
Expression	positive						Protein, FunctionalClass,	Protein, FunctionalClass,
							Complex, SmallMol	Complex
Expression	negative		ĺ				Protein, FunctionalClass,	Protein, FunctionalClass,
							Complex, SmallMol	Complex
Genetic							Protein, FunctionalClass,	Disease
Change							Complex	
	Control type Direct Regulation Direct Regulation Binding Biomarker Biomarker Cell Cell Cell Cell Chem Reaction Expression Expression	ControlItype>DirectpositiveRegulationnegativeRegulation-Binding-Biomarker-Biomarker-Biomarker-Biomarker-Cell-Call-Call-Reaction-Reaction-ExpressionpositiveFapressionnegative	Control typeImage: selection anismDirectpositiveImage: selectionRegulationImage: selectionImage: selectionBiomarkerImage: selectionImage: selectionBiomarkerImage: selectionImage: selectionBiomarkerImage: selectionImage: selectionBiomarkerImage: selectionImage: selectionCellImage: selectionImage: selectionCallImage: selectionImage: selectionCellImage: selectionImage: selectionCallImage: selectionImage: selection<	Control typeanismmarker1positiveTypeDirectpositiveIRegulationIIDirectnegativeIBiolingIIBiomarkerIIBiomarkerIIBiomarkerIIBiomarkerIICellIICalmantIIChemIIReactionPositiveIExpressionPositiveIExpressionNegativeISubscienceII <tr< td=""><td>Control anism marker Type Direct positive Imarker Imarker Regulation Imarker Imarker Imarker Direct negative Imarker Imarker Regulation Imarker Imarker Imarker Binding Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Cell Imarker Imarker Imarker Cell Imarker Imarker Imarker Reaction Imarker Imarker Imarker Fibrerssion Imarker Imarker Imarker Fibrerssion Imarker Imarker Imarker Imarker Imarker Imarker Imarker Reaction Imarker Imarker Imarker Imarker Imarker <td< td=""><td>Control type anism marker Type ative type Direct positive I I I Regulation i I I I Direct negative I I I I Regulation negative I I I I Binding I I I I I Biomarker I I I I I Regulation I I I I I Biomarker I I I I I Biomarker I I I I I Cell I I I I I Chem I I I I I Reaction I I I I I Reaction I I I I I Reaction I I I I I React</td><td>Control type Imarker Type Aiver Type Physical Aiver Type Direct positive Imarker Type Aiver Type Direct Physical Regulation negative Imarker Imarker Imarker Imarker Regulation negative Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Cell Imarker Imarker Imarker Imarker Imarker Chem Imarker Imarker <t< td=""><td>Control type Image is anism Physical Physical Physical Direct positive Image is anism Imag</td></t<></td></td<></td></tr<>	Control anism marker Type Direct positive Imarker Imarker Regulation Imarker Imarker Imarker Direct negative Imarker Imarker Regulation Imarker Imarker Imarker Binding Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Cell Imarker Imarker Imarker Cell Imarker Imarker Imarker Reaction Imarker Imarker Imarker Fibrerssion Imarker Imarker Imarker Fibrerssion Imarker Imarker Imarker Imarker Imarker Imarker Imarker Reaction Imarker Imarker Imarker Imarker Imarker <td< td=""><td>Control type anism marker Type ative type Direct positive I I I Regulation i I I I Direct negative I I I I Regulation negative I I I I Binding I I I I I Biomarker I I I I I Regulation I I I I I Biomarker I I I I I Biomarker I I I I I Cell I I I I I Chem I I I I I Reaction I I I I I Reaction I I I I I Reaction I I I I I React</td><td>Control type Imarker Type Aiver Type Physical Aiver Type Direct positive Imarker Type Aiver Type Direct Physical Regulation negative Imarker Imarker Imarker Imarker Regulation negative Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Cell Imarker Imarker Imarker Imarker Imarker Chem Imarker Imarker <t< td=""><td>Control type Image is anism Physical Physical Physical Direct positive Image is anism Imag</td></t<></td></td<>	Control type anism marker Type ative type Direct positive I I I Regulation i I I I Direct negative I I I I Regulation negative I I I I Binding I I I I I Biomarker I I I I I Regulation I I I I I Biomarker I I I I I Biomarker I I I I I Cell I I I I I Chem I I I I I Reaction I I I I I Reaction I I I I I Reaction I I I I I React	Control type Imarker Type Aiver Type Physical Aiver Type Direct positive Imarker Type Aiver Type Direct Physical Regulation negative Imarker Imarker Imarker Imarker Regulation negative Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Biomarker Imarker Imarker Imarker Imarker Imarker Cell Imarker Imarker Imarker Imarker Imarker Chem Imarker Imarker <t< td=""><td>Control type Image is anism Physical Physical Physical Direct positive Image is anism Imag</td></t<>	Control type Image is anism Physical Physical Physical Direct positive Image is anism Imag

Epigenetically	GeneticChange			epigenetic		Protein,	Disease
	GeneticChange			epigenetic			Disease
controlled in						FunctionalClass,	
						Complex	
Gene	GeneticChange			mutation		Protein,	Disease
mutated in						FunctionalClass,	
					 	Complex	
Gene deleted	GeneticChange			gene deletion		Protein,	Disease
in						FunctionalClass,	
					 	Complex	
Gene	GeneticChange			gene		Protein,	Disease
amplified in				amplification		FunctionalClass,	
				amplification		Complex	
Activate	MolSynthesis	positive				Protein,	SmallMol
synthesis						FunctionalClass,	
						Complex, SmallMol	
Activate	MolSynthesis	negative				Protein,	SmallMol
degradation						FunctionalClass,	
					 	Complex, SmallMo	
imports	MolTransport		import		Direct	Protein,	Protein,
					Physical	FunctionalClass,	FunctionalClass,
						Complex	Complex, SmallMol
Exports	MolTransport		export		Direct	Protein,	Protein,
					Physical	FunctionalClass,	FunctionalClass,
						Complex	Complex, SmallMol
Activates	MolTransport	positive				Protein,	Protein,
transport						FunctionalClass,	FunctionalClass,
						Complex	Complex, SmallMol
Inhibits	MolTransport	negative				Protein,	Protein,
transport						FunctionalClass,	FunctionalClass,
						Complex	Complex, SmallMol
Binds gene	Promoter				Direct	Protein,	Protein
promoter					Physical	FunctionalClass,	
F	Binding				,	Complex	
Binds gene	Promoter	positive			Direct	Protein,	Protein
-		F - 51.170					
promoter to	Binding				Physical	FunctionalClass, Complex	
activate gene						Complex	
expression							

in Change Change Complex Complex Complex Complex Complex Complex Complex Complex, SmallM Compl	Binds gene	Promoter	negative			Direct	Protein, FunctionalClass,	Protein
inhibit gene initial in the second secon	promoter to					Physical	Complex	
expression Image Image Positive Pos	inhibit gene	Binding						
Increase activity Quanitative positive Image Positive Image Positive Protein, FunctionalClass, Camplex Decrease activity Quanitative negative Image Image<	-							
in Change Image I	-	Quantitative	nositive		activity		Protein FunctionalClass	CellProcess Disease
Image Image <th< td=""><td></td><td>Quantitative</td><td>positive</td><td></td><td></td><td></td><td></td><td></td></th<>		Quantitative	positive					
in Change Increase Quantitative positive A A Abundance Protein, FunctionalClass, CellProcess, Distive abundance in Change Increase Quantitative negative A A Abundance Protein, FunctionalClass, CellProcess, Distive becrease Quantitative negative A A Abundance Protein, FunctionalClass, CellProcess, Distive abundance in Change Increase Quantitative negative A Abundance Protein, FunctionalClass, CellProcess, Distive Increase Quantitative negative Increase Quantitative positive Increase Abundance Protein, FunctionalClass, CellProcess, Distive Change Increase Quantitative negative Increase Applicational Class, Complex, Treatment Complex, Treatment Complex, Treatment Complex, FunctionalClass, Protein, FunctionalClass, Protein, FunctionalClass, Protein, FunctionalClass, CellProcess, Distive Increase		Change						
Increase Quanitative positive Image Image <td>Decrease activity</td> <td>Quantitative</td> <td>negative</td> <td></td> <td>activity</td> <td></td> <td>Protein, FunctionalClass,</td> <td>CellProcess, Disease</td>	Decrease activity	Quantitative	negative		activity		Protein, FunctionalClass,	CellProcess, Disease
abundance in Change Complex, SmallM Complex, SmallM CellProcess, Dis Complex, SmallMol Decrease Quantitative negative Image Image <td>in</td> <td>Change</td> <td></td> <td></td> <td></td> <td></td> <td>Complex</td> <td></td>	in	Change					Complex	
Image Image <th< td=""><td>Increase</td><td>Quantitative</td><td>positive</td><td></td><td>abundance</td><td></td><td>Protein, FunctionalClass,</td><td>CellProcess, Disease</td></th<>	Increase	Quantitative	positive		abundance		Protein, FunctionalClass,	CellProcess, Disease
Decrease Quantitative negative Image Image </td <td>abundance in</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Complex, SmallM</td> <td></td>	abundance in						Complex, SmallM	
abundance in Change Image		Change						
Increase Quantitative positive Image Image </td <td>Decrease</td> <td>Quantitative</td> <td>negative</td> <td></td> <td>abundance</td> <td></td> <td>Protein, FunctionalClass,</td> <td>CellProcess, Disease</td>	Decrease	Quantitative	negative		abundance		Protein, FunctionalClass,	CellProcess, Disease
expression in Change Image	abundance in	Change					Complex, SmallMol	
Change Image Image <t< td=""><td>Increase</td><td>Quantitative</td><td>positive</td><td></td><td>expression</td><td></td><td>Protein, FunctionalClass,</td><td>CellProcess, Disease</td></t<>	Increase	Quantitative	positive		expression		Protein, FunctionalClass,	CellProcess, Disease
expression in Change No No No Complex, Treatment Protein, FunctionalClass, Activates or Regulation positive Image	expression in	Change					Complex	
Induces Regulation positive Image	Decrease	Quantitative	negative		expression		Protein, FunctionalClass,	CellProcess, Disease
Activates or Regulation positive Image: Complex in the i	expression in	Change					Complex, Treatment	
Inhibits or Regulation negative Image: StateChange	Activates or	-	positive				Protein, FunctionalClass,	Protein,
Inhibits or Regulation negative Image: Second	Induces						Complex, SmallMol,	FunctionalClass,
Inhibits or Regulation negative Image (1) Image (1) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Treatment</td> <td>Complex,</td>							Treatment	Complex,
Inhibits or Regulation negative Image in the second								CellProcess, Disease,
Diminishes Image: StateChange Image: StateChang								ClinicalParamter
Phosphorylation StateChange Image: StateChange<	Inhibits or	Regulation	negative				Protein, FunctionalClass,	Protein,
Change StateChange Image: Complex in the complex i	Diminishes						Complex, SmallMol,	FunctionalClass,
Change StateChange Image							Treatment	Complex,
Change StateChange Protein, FunctionalClass, CellProcess, Dis phosphorylation ClinicalParamter								CellProcess, Disease,
phosphorylation Complex ClinicalParamter								ClinicalParamter
rylation	Change	StateChange		phospho			Protein, FunctionalClass,	CellProcess, Disease,
status in rylation	phosphorylation						Complex	ClinicalParamter
	status in			rylation				
Change splicing StateChange StateChange Alternative Alternative Protein CellProcess, Dis	Change splicing	StateChange		alternative			Protein	CellProcess, Disease,
pattern in splcing ClinicalParamter	pattern in			splcing				ClinicalParamter

Altered in	StateChange				Protein,	CellProcess, Disease,
					FunctionalClass,	ClinicalParamter
					Complex	
Phospho	ProtModification		phospho	Direct	Protein,	Protein,
rylates			rylation	Physical	FunctionalClass,	FunctionalClass,
lylates			rylation		Complex	Complex
Phospho	Prot	positive	phospho	Direct	Protein,	Protein,
				Physical	FunctionalClass,	FunctionalClass,
rylates to	Modification		rylation		Complex	Complex
activate						
Phosphorylates	Prot	negative	phosphorylation	Direct	Protein,	Protein,
				Physica	FunctionalClass,	FunctionalClass,
to inhibit	Modification				Complex	Complex
Ubiquitinates	Prot	negative	ubiquitination	Direct	Protein,	Protein,
				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Acetylates	Prot		acetylation	Direct	Protein,	Protein,
				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Acetylates to	Prot	positive	acetylation	Direct	Protein,	Protein,
activate				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Acetylates to	Prot	negative	acetylation	Direct	Protein,	Protein,
inhibit				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Methylates	Prot		methylation	Direct	Protein,	Protein,
				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Methylates to	Prot	positive	methylation	Direct	Protein,	Protein,
activate				Physical	FunctionalClass,	FunctionalClass,
	Modification				Complex	Complex
Methylates to	Prot	negative	methylation	Direct	Protein,	Protein,
	1	1		Physical	FunctionalClass,	FunctionalClass,
inhibit						
inhibit	Modification				Complex	Complex
inhibit Glycosylates	Modification Prot		glycosylation	Direct	Complex Protein,	Complex Protein,
			glycosylation	Direct Physical		

Glycosylates to	ProtModification	positive	glycosylation		Direct	Protein, FunctionalClass,	Protein,
activate					Physical	Complex	FunctionalClass,
							Complex
Glycosylates to	ProtModification	negative	glycosylation		Direct	Protein, FunctionalClass,	Protein,
inhibit					Physical	Complex	FunctionalClass,
							Complex
Activates	Expression	positive				Protein, FunctionalClass,	Protein,
Expression						Complex, SmallMol,	FunctionalClass,
						Treatment	Complex
Inhibits	Expression	negative				Protein, FunctionalClass,	Protein,
Expression						Complex, SmallMol,	FunctionalClass,
						Treatment	Complex
Cleaves to	ProtModification	positive				Protein, FunctionalClass,	Protein,
activate						Complex	FunctionalClass,
							Complex
Cleaves to	ProtModification	negative				Protein, FunctionalClass,	Protein,
inhibit						Complex	FunctionalClass,
							Complex
Induce cleavage	Expression	negative				Protein, FunctionalClass,	Protein,
or degradation						Complex, SmallMol,	FunctionalClass,
						Treatment	Complex
Inhibit	Expression					Protein, FunctionalClass,	Protein,
cleavage or						Complex, SmallMol,	FunctionalClass,
degradation						Treatment	Complex